Pamhyr2/src/Model/Geometry/ProfileXYZ.py

512 lines
15 KiB
Python

# ProfileXYZ.py -- Pamhyr
# Copyright (C) 2023 INRAE
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
# -*- coding: utf-8 -*-
import logging
import numpy as np
from typing import List
from tools import timer
from Model.Tools.PamhyrDB import SQLSubModel
from Model.Except import ClipboardFormatError
from Model.Geometry.Profile import Profile
from Model.Geometry.PointXYZ import PointXYZ
from Model.Geometry.Vector_1d import Vector1d
logger = logging.getLogger()
class ProfileXYZ(Profile, SQLSubModel):
_sub_classes = [
PointXYZ,
]
def __init__(self,
id: int = -1,
name: str = "",
kp: float = 0.,
reach=None,
num=0,
nb_point: int = 0,
code1: int = 0, code2: int = 0,
status=None):
"""ProfileXYZ constructor
Args:
num: The number of this profile
code1: The interpolation code 1
code2: The interpolation code 2
kp: Kilometer point
name: The name of profile
Returns:
Nothing.
"""
super(ProfileXYZ, self).__init__(
id=id,
num=num,
name=name,
kp=kp,
code1=code1, code2=code2,
_type="XYZ",
reach=reach,
status=status,
)
@classmethod
def _db_create(cls, execute):
execute("""
CREATE TABLE geometry_profileXYZ(
id INTEGER NOT NULL PRIMARY KEY,
ind INTEGER NOT NULL,
name TEXT,
reach INTEGER NOT NULL,
kp REAL NOT NULL,
num INTEGER NOT NULL,
code1 INTEGER NOT NULL,
code2 INTEGER NOT NULL,
sl INTEGER,
FOREIGN KEY(reach) REFERENCES river_reach(id),
FOREIGN KEY(sl) REFERENCES sedimentary_layer(id)
)
""")
return cls._create_submodel(execute)
@classmethod
def _db_update(cls, execute, version):
major, minor, release = version.strip().split(".")
if major == minor == "0":
if int(release) < 2:
execute(
"""
ALTER TABLE geometry_profileXYZ
ADD COLUMN sl INTEGER
REFERENCES sedimentary_layer(id)
"""
)
return cls._update_submodel(execute, version)
@classmethod
def _db_load(cls, execute, data=None):
profiles = []
status = data["status"]
reach = data["reach"]
table = execute(
"SELECT id, ind, name, kp, num, code1, code2, sl " +
"FROM geometry_profileXYZ " +
f"WHERE reach = {reach.id}"
)
for row in table:
id = row[0]
ind = row[1]
name = row[2]
kp = row[3]
num = row[5]
code1 = row[5]
code2 = row[6]
sl = row[7]
new = cls(
id=id, num=num,
name=name, kp=kp,
code1=code1, code2=code2,
reach=reach,
status=status
)
if sl == -1 or sl is None:
new._sl = None
else:
new._sl = next(
filter(
lambda s: s.id == sl,
data["sediment_layers_list"].sediment_layers
)
)
data["profile"] = new
new._points = PointXYZ._db_load(execute, data.copy())
yield ind, new
def _db_save(self, execute, data=None):
ok = True
ind = data["ind"]
sl = self._sl.id if self._sl is not None else -1
sql = (
"INSERT OR REPLACE INTO " +
"geometry_profileXYZ(id, ind, name, reach, " +
"kp, num, code1, code2, sl) " +
"VALUES (" +
f"{self.id}, {ind}, '{self._db_format(self._name)}', " +
f"{self.reach.id}, {self.kp}, {self.num}, " +
f"{self.code1}, {self.code1}, {sl}" +
")"
)
execute(sql)
points = self.points
data["profile"] = self
execute(f"DELETE FROM geometry_pointXYZ WHERE profile = {self.id}")
ind = 0
for point in points:
data["ind"] = ind
ok &= point._db_save(execute, data)
ind += 1
return ok
@classmethod
def from_data(cls, header, data):
profile = None
try:
if len(header) == 0:
name = data[0]
kp = data[1]
reach = data[2]
status = data[3]
profile = cls(
id=-1,
name=name,
kp=kp,
reach=reach,
status=status
)
else:
valid_header = {'name', 'reach', 'kp', 'status'}
d = {}
for i, v in enumerate(data):
h = header[i].strip().lower().split(' ')[0]
if h in valid_header:
d[h] = v
profile = cls(**d)
except Exception as e:
logger.error(e)
raise ClipboardFormatError(header, data)
return profile
def point_from_data(self, header, data):
point = None
try:
if len(header) == 0:
x = float(data[0])
y = float(data[1])
z = float(data[2])
name = data[3] if len(data) == 4 else ""
point = PointXYZ(
x, y, z, name, profile=self, status=self._status
)
else:
valid_header = {'name', 'x', 'y', 'z'}
d = {"status": self._status, "profile": self}
for i, v in enumerate(data):
h = header[i].strip().lower().split(' ')[0]
if h in valid_header:
d[h] = v
point = PointXYZ(**d)
except Exception as e:
raise ClipboardFormatError(header=header, data=data)
return point
def x(self):
return [point.x for point in self.points]
def y(self):
return [point.y for point in self.points]
def z(self):
return [point.z for point in self.points]
def names(self):
return [point.name for point in self.points]
def x_max(self):
return max(self.filter_isnan(self.x()))
def x_min(self):
return min(self.filter_isnan(self.x()))
def y_max(self):
return max(self.filter_isnan(self.y()))
def y_min(self):
return min(self.filter_isnan(self.y()))
def z_max(self):
return max(self.filter_isnan(self.z()))
def z_min(self):
return min(self.filter_isnan(self.z()))
def import_points(self, list_points: list):
"""Import a list of points to profile
Args:
list_points: Liste of PointXYZ
Returns:
Nothing.
"""
for point in list_points:
pt = PointXYZ(*point, profile=self, status=self._status)
self.points.append(pt)
self._status.modified()
def get_point_i(self, index: int) -> PointXYZ:
"""Get point at index.
Args:
index: Index of point.
Returns:
The point.
"""
try:
return self.points[index]
except IndexError:
raise IndexError(f"Invalid point index: {index}")
def get_point_by_name(self, name: str) -> PointXYZ:
"""Get point by name.
Args:
name: Point name.
Returns:
The point.
"""
try:
n_name = name.lower().strip()
return next(
filter(
lambda p: p.name.lower().strip() == n_name,
self.points
)
)
except Exception as e:
logger.debug(f"{e}")
raise IndexError(
f"Invalid point name: {name} " +
f"for profile ({self.id}) kp = {self.kp}"
)
def add(self):
"""Add a new PointXYZ to profile.
Returns:
Nothing.
"""
point_xyz = PointXYZ(0., 0., 0., profile=self, status=self._status)
self.points.append(point_xyz)
self._status.modified()
def insert(self, index: int):
"""Insert a new point at index.
Args:
index: The index of new profile.
Returns:
The new point.
"""
point = PointXYZ(0., 0., 0., profile=self, status=self._status)
self.points.insert(index, point)
self._status.modified()
return point
def filter_isnan(self, lst):
"""Returns the input list without 'nan' element
Args:
lst: The list to filter
Returns:
The list without 'nan'
"""
return [x for x in lst if not np.isnan(x)]
def _first_point_not_nan(self):
first_point = self.points[0]
for point in self.points:
if not point.is_nan():
first_point = point
break
return first_point
def _last_point_not_nan(self):
last_point = self.points[-1]
for point in self.points[::-1]:
if not point.is_nan():
last_point = point
break
return last_point
@timer
def get_station(self) -> np.ndarray:
"""Projection of the points of the profile on a plane.
Args:
profile: The profile
Returns:
Projection of the points of the profile on a plane.
"""
if self.nb_points < 3:
return None
else:
first_named_point = None
index_first_named_point = None
last_named_point = None
first_point_not_nan = self._first_point_not_nan()
last_point_not_nan = self._last_point_not_nan()
for index, point in enumerate(self.points):
if point.point_is_named():
index_first_named_point = index
first_named_point = point
break
for point in reversed(self.points):
if point.point_is_named():
last_named_point = point
break
station = []
constant = 0.0
if (first_named_point is not None and
last_named_point is not None):
if (first_named_point != last_named_point and
first_named_point.x != last_named_point.x):
vector = Vector1d(first_named_point, last_named_point)
norm_dir_vec = vector.normalized_direction_vector()
else:
vector = Vector1d(first_point_not_nan, last_point_not_nan)
norm_dir_vec = vector.normalized_direction_vector()
for point in self.points:
xi = point.x - first_named_point.x
yi = point.y - first_named_point.y
station_i = (norm_dir_vec[0] * xi +
norm_dir_vec[1] * yi)
station.append(station_i)
constant = station[index_first_named_point]
elif first_named_point is None:
vector = Vector1d(first_point_not_nan, last_point_not_nan)
norm_dir_vec = vector.normalized_direction_vector()
for point in self.points:
xi = point.x - first_point_not_nan.x
yi = point.y - first_point_not_nan.y
station_i = (norm_dir_vec[0] * xi +
norm_dir_vec[1] * yi)
station.append(station_i)
z_min = self.z_min()
index_profile_z_min = list(
filter(
lambda z: z[1] == z_min,
enumerate(self.z())
)
)[0]
constant = station[index_profile_z_min[0]]
return list(map(lambda s: s - constant, station))
def width_approximation(self):
rg = self.get_point_by_name("rg")
rd = self.get_point_by_name("rd")
return abs(rg.dist(rd))
def get_water_limits(self, z):
# ====================================================================
# détermination des points limites RG et RD pour un niveau
# d'eau donné
#
# irg et ird sont les premiers indices en partant des rives
# gauche et droite qui correspondent à des points sous la
# surface de l'eau ptX et ptY sont les points interpolés où
# le plan d'eau intersecte le profil known_level est le
# niveau d'eau pour lequel on a obtenu irg, ird, ptX et ptY
# ====================================================================
# initialisation
irg = -1
ird = -1
for i in range(self.number_points):
if self.point(i).z <= z:
irg = i
for i in reversed(range(self.number_points)):
if self.point(i).z <= z:
ird = i
# interpolation des points ptX et ptY
if (irg < self.number_points - 1):
x = np.interp(
z,
[self.point(irg).z, self.point(irg + 1).z],
[self.point(irg).x, self.point(irg + 1).x]
)
y = np.interp(
z,
[self.point(irg).z, self.point(irg + 1).z],
[self.point(irg).y, self.point(irg + 1).y]
)
ptX = PointXYZ(x, y, z)
else:
ptX = self.point(0)
if (ird > 0):
x = np.interp(
z,
[self.point(ird-1).z, self.point(ird).z],
[self.point(ird-1).x, self.point(ird).x]
)
y = np.interp(
z,
[self.point(ird).z, self.point(ird - 1).z],
[self.point(ird).y, self.point(ird - 1).y]
)
ptY = PointXYZ(x, y, z)
else:
ptY = self.point(self.number_points - 1)
return ptX, ptY