Pamhyr2/src/Model/Geometry/ProfileXYZ.py

882 lines
24 KiB
Python

# ProfileXYZ.py -- Pamhyr
# Copyright (C) 2023-2024 INRAE
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.
# -*- coding: utf-8 -*-
import logging
import numpy as np
from typing import List
from functools import reduce
from dataclasses import dataclass
from tools import timer
from shapely import geometry
from Model.Tools.PamhyrDB import SQLSubModel
from Model.Except import ClipboardFormatError
from Model.Geometry.Profile import Profile
from Model.Geometry.PointXYZ import PointXYZ
from Model.Geometry.Vector_1d import Vector1d
logger = logging.getLogger()
@dataclass
class Tabulation:
z: np.array([])
A: np.array([])
L: np.array([])
class ProfileXYZ(Profile, SQLSubModel):
_sub_classes = [
PointXYZ,
]
def __init__(self,
id: int = -1,
name: str = "",
rk: float = 0.,
reach=None,
num=0,
nb_point: int = 0,
code1: int = 0, code2: int = 0,
status=None):
"""ProfileXYZ constructor
Args:
num: The number of this profile
code1: The interpolation code 1
code2: The interpolation code 2
rk: Kilometer point
name: The name of profile
Returns:
Nothing.
"""
super(ProfileXYZ, self).__init__(
id=id,
num=num,
name=name,
rk=rk,
code1=code1, code2=code2,
_type="XYZ",
reach=reach,
status=status,
)
self.tab = Tabulation([], [], [])
self.tab_up_to_date = False
self.time_z = 0.0
self.time_A = 0.0
self.time_l = 0.0
self._station = []
self.station_up_to_date = False
@classmethod
def _db_create(cls, execute):
execute("""
CREATE TABLE geometry_profileXYZ(
id INTEGER NOT NULL PRIMARY KEY,
ind INTEGER NOT NULL,
name TEXT,
reach INTEGER NOT NULL,
rk REAL NOT NULL,
num INTEGER NOT NULL,
code1 INTEGER NOT NULL,
code2 INTEGER NOT NULL,
sl INTEGER,
FOREIGN KEY(reach) REFERENCES river_reach(id),
FOREIGN KEY(sl) REFERENCES sedimentary_layer(id)
)
""")
return cls._create_submodel(execute)
@classmethod
def _db_update(cls, execute, version):
major, minor, release = version.strip().split(".")
if major == minor == "0":
rl = int(release)
if rl < 2:
execute(
"""
ALTER TABLE geometry_profileXYZ
ADD COLUMN sl INTEGER
REFERENCES sedimentary_layer(id)
"""
)
if rl < 11:
execute(
"""
ALTER TABLE geometry_profileXYZ
RENAME COLUMN kp TO rk
"""
)
return cls._update_submodel(execute, version)
@classmethod
def _db_load(cls, execute, data=None):
profiles = []
status = data["status"]
reach = data["reach"]
table = execute(
"SELECT id, ind, name, rk, num, code1, code2, sl " +
"FROM geometry_profileXYZ " +
f"WHERE reach = {reach.id}"
)
for row in table:
id = row[0]
ind = row[1]
name = row[2]
rk = row[3]
num = row[5]
code1 = row[5]
code2 = row[6]
sl = row[7]
new = cls(
id=id, num=num,
name=name, rk=rk,
code1=code1, code2=code2,
reach=reach,
status=status
)
if sl == -1 or sl is None:
new._sl = None
else:
new._sl = next(
filter(
lambda s: s.id == sl,
data["sediment_layers_list"].sediment_layers
)
)
data["profile"] = new
new._points = PointXYZ._db_load(execute, data.copy())
yield ind, new
def _db_save(self, execute, data=None):
ok = True
ind = data["ind"]
sl = self._sl.id if self._sl is not None else -1
sql = (
"INSERT OR REPLACE INTO " +
"geometry_profileXYZ(id, ind, name, reach, " +
"rk, num, code1, code2, sl) " +
"VALUES (" +
f"{self.id}, {ind}, '{self._db_format(self._name)}', " +
f"{self.reach.id}, {self.rk}, {self.num}, " +
f"{self.code1}, {self.code1}, {sl}" +
")"
)
execute(sql)
points = self.points
data["profile"] = self
execute(f"DELETE FROM geometry_pointXYZ WHERE profile = {self.id}")
ind = 0
for point in points:
data["ind"] = ind
ok &= point._db_save(execute, data)
ind += 1
return ok
@classmethod
def from_data(cls, header, data):
profile = None
try:
if len(header) == 0:
name = data[0]
rk = data[1]
reach = data[2]
status = data[3]
profile = cls(
id=-1,
name=name,
rk=rk,
reach=reach,
status=status
)
else:
valid_header = {'name', 'reach', 'rk', 'status'}
d = {}
for i, v in enumerate(data):
h = header[i].strip().lower().split(' ')[0]
if h in valid_header:
d[h] = v
profile = cls(**d)
except Exception as e:
logger.error(e)
raise ClipboardFormatError(header, data)
return profile
def point_from_data(self, header, data):
def float_format(s: str):
return float(
s.replace(",", ".")
)
point = None
try:
if len(header) == 0:
x = float_format(data[0])
y = float_format(data[1])
z = float_format(data[2])
name = data[3] if len(data) == 4 else ""
point = PointXYZ(
x, y, z, name, profile=self, status=self._status
)
else:
valid_header = {'name', 'x', 'y', 'z'}
d = {"status": self._status, "profile": self}
for i, v in enumerate(data):
h = header[i].strip().lower().split(' ')[0]
if h in valid_header:
d[h] = v
point = PointXYZ(**d)
except Exception as e:
raise ClipboardFormatError(header=header, data=data)
return point
def display_name(self):
name = ""
if self.name != "":
name += f"{self.name} "
name += f"({self.rk})"
return name
def x(self):
return [point.x for point in self.points]
def y(self):
return [point.y for point in self.points]
def z(self):
return [point.z for point in self.points]
def names(self):
return [point.name for point in self.points]
def x_max(self):
return max(self.filter_isnan(self.x()))
def x_min(self):
return min(self.filter_isnan(self.x()))
def y_max(self):
return max(self.filter_isnan(self.y()))
def y_min(self):
return min(self.filter_isnan(self.y()))
def z_max(self):
return max(self.filter_isnan(self.z()))
def z_min(self):
return min(self.filter_isnan(self.z()))
def import_points(self, list_points: list):
"""Import a list of points to profile
Args:
list_points: Liste of PointXYZ
Returns:
Nothing.
"""
for point in list_points:
pt = PointXYZ(*point, profile=self, status=self._status)
self.points.append(pt)
self._status.modified()
self.tab_up_to_date = False
self.station_up_to_date = False
def get_point_i(self, index: int) -> PointXYZ:
"""Get point at index.
Args:
index: Index of point.
Returns:
The point.
"""
try:
return self.points[index]
except IndexError:
raise IndexError(f"Invalid point index: {index}")
def get_point_by_name(self, name: str) -> PointXYZ:
"""Get point by name.
Args:
name: Point name.
Returns:
The point.
"""
try:
n_name = name.lower().strip()
return next(
filter(
lambda p: p.name.lower().strip() == n_name,
self.points
)
)
except Exception as e:
logger.debug(f"{e}")
raise IndexError(
f"Invalid point name: {name} " +
f"for profile ({self.id}) rk = {self.rk}"
)
def has_standard_named_points(self):
l, r = reduce(
lambda acc, n: (
(acc[0] | (n == "rg")),
(acc[1] | (n == "rd"))
),
map(lambda p: p.name.lower().strip(),
self.points),
(False, False)
)
return l & r
def add(self):
"""Add a new PointXYZ to profile.
Returns:
Nothing.
"""
point_xyz = PointXYZ(0., 0., 0., profile=self, status=self._status)
self.points.append(point_xyz)
self._status.modified()
self.tab_up_to_date = False
self.station_up_to_date = False
def insert(self, index: int):
"""Insert a new point at index.
Args:
index: The index of new profile.
Returns:
The new point.
"""
point = PointXYZ(0., 0., 0., profile=self, status=self._status)
self.points.insert(index, point)
self._status.modified()
self.tab_up_to_date = False
self.station_up_to_date = False
return point
def filter_isnan(self, lst):
"""Returns the input list without 'nan' element
Args:
lst: The list to filter
Returns:
The list without 'nan'
"""
return [x for x in lst if not np.isnan(x)]
def speed(self, q, z):
area = self.wet_area(z)
if area == 0:
return 0
return q / area
def width_approximation(self):
if self.has_standard_named_points():
rg = self.get_point_by_name("rg")
rd = self.get_point_by_name("rd")
else:
rg = self.points[0]
rd = self.points[-1]
return abs(rg.dist(rd))
def compute_wet_width(self, z):
start, end = self.get_all_water_limits_ac(z)
if len(start) == 0:
return 0
length = 0.0
for s, e in zip(start, end):
length += abs(s - e)
return length
def wet_width(self, z):
if self.tab_up_to_date:
if z > self.tab.z[-1]:
return self.tab.L[-1]
elif z < self.tab.z[0]:
return 0.0
else:
return np.interp(z, self.tab.z, self.tab.L)
else:
return self.compute_wet_width(z)
def wet_perimeter(self, z):
lines = self.wet_lines(z)
if lines is None:
return 0
length = 0.0
for line in lines:
length += line.length
return length
def compute_wet_area(self, z):
area = 0.0
if len(self.tab.L) > 0:
if z < self.tab.z[0]:
return 0.0
i = np.searchsorted([z], self.tab.z, side='right')[0]
for j in range(i-1):
area += (self.tab.L[j] + self.tab.L[j+1]) * (
self.tab.z[j+1] - self.tab.z[j]) / 2.0
area += (self.tab.L[i-1] + self.wet_width(z))
else:
lines = self.wet_lines(z)
if lines is None:
return 0.0
for line in lines:
if len(line.coords) > 2:
poly = geometry.Polygon(line)
area += poly.area
return area
def wet_area(self, z):
if self.tab_up_to_date:
if z > self.tab.z[-1]:
return self.tab.A[-1] + self.tab.L[-1] * (z - self.tab.z[-1])
elif z < self.tab.z[0]:
return 0.0
else:
return np.interp(z, self.tab.z, self.tab.A)
else:
lines = self.wet_lines(z)
if lines is None:
return 0.0
area = 0.0
for line in lines:
if len(line.coords) > 2:
poly = geometry.Polygon(line)
area += poly.area
return area
def wet_radius(self, z):
p = self.wet_perimeter(z)
a = self.wet_area(z)
if p == 0:
return 0
return a/p
def wet_line(self, z):
points = self.wet_points(z)
if len(points) < 3:
return None
zz = map(lambda p: p.z, points)
station = self._get_station(points)
line = geometry.LineString(list(zip(station, zz)))
return line
def wet_lines(self, z):
points = self._points
if len(points) < 3:
return None
lines = []
zz = list(map(lambda p: p.z, points))
station = self._get_station(points)
line = []
for i in range(self.number_points-1):
if zz[i] >= z and zz[i+1] < z:
y = np.interp(
z,
[zz[i], zz[i+1]],
[station[i], station[i+1]]
)
line.append([y, z])
if zz[i] < z:
line.append([station[i], zz[i]])
if zz[i] <= z and zz[i+1] >= z:
y = np.interp(
z,
[zz[i], zz[i+1]],
[station[i], station[i+1]]
)
line.append([y, z])
if len(line) > 2:
lines.append(geometry.LineString(line))
line = []
if zz[self.number_points-1] < z:
line.append([station[self.number_points-1], z])
if len(line) > 2:
lines.append(geometry.LineString(line))
line = []
return lines
def max_water_depth(self, z):
return z - self.z_min()
def mean_water_depth(self, z):
a = self.wet_area(z)
w = self.wet_width(z)
if w == 0:
return 0
return a/w
def wet_polygon(self, z):
points = self.wet_points(z)
if len(points) < 3:
return None
zz = map(lambda p: p.z, points)
station = self._get_station(points)
poly = geometry.Polygon(list(zip(station, zz)))
return poly
def wet_points(self, z):
left, right = self.get_water_limits(z)
points = list(filter(lambda p: p.z < z, self._points))
points = [left] + points + [right]
points = sorted(points, key=lambda p: p.x)
return points
def get_nb_wet_areas(self, z):
n_zones = 0
points = self._points
if points[0].z <= z:
n_zones += 1
for i in range(self.number_points-1):
if points[i].z > z and points[i+1].z <= z:
n_zones += 1
return n_zones
def get_all_water_limits_ac(self, z):
"""
Determine all water limits for z elevation.
"""
points = self._points
if len(points) < 3:
return None
zz = list(map(lambda p: p.z, points))
station = self.get_station()
start = []
if points[0].z <= z:
start.append(station[0])
for i in range(self.number_points-1):
if zz[i] > z and zz[i+1] <= z:
y = np.interp(
z,
[zz[i], zz[i+1]],
[station[i], station[i+1]]
)
start.append(y)
end = []
if points[-1].z <= z:
end.append(station[-1])
for i in reversed(range(self.number_points-1)):
if zz[i] <= z and zz[i+1] > z:
y = np.interp(
z,
[zz[i], zz[i+1]],
[station[i], station[i+1]]
)
end.append(y)
if len(start) != len(end):
logger.error(f"ERROR in get_all_water_limits_ac")
return [], []
return start, list(reversed(end))
def get_water_limits(self, z):
"""
Determine left and right limits of water elevation.
"""
# Get the index of first point with elevation lesser than water
# elevation (for the right and left river side)
i_left = -1
i_right = -1
for i in range(self.number_points):
if self.point(i).z <= z:
i_left = i
break
for i in reversed(range(self.number_points)):
if self.point(i).z <= z:
i_right = i
break
# Interpolate points at river left side
if (i_left > 0):
x = np.interp(
z,
[self.point(i_left).z, self.point(i_left - 1).z],
[self.point(i_left).x, self.point(i_left - 1).x]
)
y = np.interp(
z,
[self.point(i_left).z, self.point(i_left - 1).z],
[self.point(i_left).y, self.point(i_left - 1).y]
)
pt_left = PointXYZ(x, y, z, name="wl_left")
else:
pt_left = self.point(0)
# Interpolate points at river right side
if (i_right < self.number_points - 1):
x = np.interp(
z,
[self.point(i_right).z, self.point(i_right + 1).z],
[self.point(i_right).x, self.point(i_right + 1).x]
)
y = np.interp(
z,
[self.point(i_right).z, self.point(i_right + 1).z],
[self.point(i_right).y, self.point(i_right + 1).y]
)
pt_right = PointXYZ(x, y, z, name="wl_right")
else:
pt_right = self.point(self.number_points - 1)
return pt_left, pt_right
def compute_tabulation(self):
sorted_points = sorted(self._points, key=lambda p: p.z)
self.tab.z = np.array([p.z for p in sorted_points], np.float64)
self.tab.L = np.zeros(len(self.tab.z), np.float64)
self.tab.A = np.zeros(len(self.tab.z), np.float64)
for i in range(1, len(self.tab.z)):
self.tab.L[i] = self.compute_wet_width(self.tab.z[i])
dx = (self.tab.L[i] + self.tab.L[i-1])/2
dz = self.tab.z[i] - self.tab.z[i-1]
self.tab.A[i] = self.tab.A[i-1] + dz * dx
self.tab_up_to_date = True
def get_station(self):
"""Projection of the points of the profile on a plane.
Args:
self: The profile
Returns:
Projection of the points of the profile on a plane.
"""
if self.nb_points < 2:
return [0.0]
else:
if self.station_up_to_date:
return self._station
else:
self._station = self._get_station(self.points)
self.station_up_to_date = True
return self._station
@timer
def _get_station(self, points):
first_named_point = None
index_first_named_point = None
last_named_point = None
first_point_not_nan = self._first_point_not_nan(points)
last_point_not_nan = self._last_point_not_nan(points)
for index, point in enumerate(points):
if point.point_is_named():
index_first_named_point = index
first_named_point = point
break
for point in reversed(points):
if point.point_is_named():
last_named_point = point
break
station = []
constant = 0.0
if (first_named_point is not None
and last_named_point is not None):
if (first_named_point != last_named_point
and first_named_point.x != last_named_point.x):
vector = Vector1d(first_named_point, last_named_point)
norm_dir_vec = vector.normalized_direction_vector()
else:
vector = Vector1d(first_point_not_nan, last_point_not_nan)
norm_dir_vec = vector.normalized_direction_vector()
for point in points:
xi = point.x - first_named_point.x
yi = point.y - first_named_point.y
station_i = (norm_dir_vec[0] * xi +
norm_dir_vec[1] * yi)
station.append(station_i)
constant = station[index_first_named_point]
elif first_named_point is None:
vector = Vector1d(first_point_not_nan, last_point_not_nan)
norm_dir_vec = vector.normalized_direction_vector()
for point in points:
xi = point.x - first_point_not_nan.x
yi = point.y - first_point_not_nan.y
station_i = (norm_dir_vec[0] * xi +
norm_dir_vec[1] * yi)
station.append(station_i)
z_min = self.z_min()
index_profile_z_min = next(
filter(
lambda z: z[1] == z_min,
enumerate(self.z())
)
)
constant = station[index_profile_z_min[0]]
return list(map(lambda s: s - constant, station))
def _first_point_not_nan(self, points):
first_point = None
for point in points:
if not point.is_nan():
first_point = point
break
return first_point
def _last_point_not_nan(self, points):
last_point = None
for point in reversed(points):
if not point.is_nan():
last_point = point
break
return last_point
def purge(self, np_purge):
"""
Remove points to keep at most np_purge points.
"""
if (self.nb_points <= np_purge):
return
nb_named = 2 # we consider the first and last point as named
area = [0.0]
for i in range(1, self.nb_points-1):
if self.point(i).point_is_named():
area.append(9999999.999)
nb_named += 1
else:
area.append(
PointXYZ.areatriangle3d(
self.point(i-1),
self.point(i),
self.point(i+1))
)
area.append(0.0)
while self.nb_points > max(np_purge, nb_named):
to_rm = np.argmin(area[1:self.nb_points - 1]) + 1
self.delete_i([to_rm])
area.pop(to_rm)
for i in [to_rm-1, to_rm]:
if (i == 0):
continue
if (i == self.nb_points - 1):
continue
if self.point(i).point_is_named():
area[i] = 9999999.999
else:
area[i] = PointXYZ.areatriangle3d(
self.point(i-1),
self.point(i),
self.point(i+1)
)
def shift(self, x, y, z):
for p in self.points:
p.x = p.x + x
p.y = p.y + y
p.z = p.z + z