Acoustic recording data is updated. If data are pre-processed in the previous tab then pre-processed data of the acoustic recording are provided in Sample data tab. If data are not pre-processed, then raw data are provided in sample data tab.
parent
1b2c5954ee
commit
011cfd536e
|
|
@ -1109,7 +1109,16 @@ class SampleDataTab(QWidget):
|
|||
def fill_comboboxes_and_plot_transect(self):
|
||||
|
||||
self.combobox_acoustic_data.clear()
|
||||
self.combobox_acoustic_data.addItems(stg.filename_BS_raw_data)
|
||||
for n, m in enumerate(stg.noise_method):
|
||||
print("n = ", n, "m = ", m)
|
||||
if stg.noise_method[n] == 0:
|
||||
print("stg.filename_BS_raw_data ", stg.filename_BS_raw_data)
|
||||
self.combobox_acoustic_data.addItem(stg.filename_BS_raw_data[n])
|
||||
elif stg.noise_method[n]!=0:
|
||||
print("stg.data_preprocessed ", stg.data_preprocessed)
|
||||
print("stg.data_preprocessed[n] ", stg.data_preprocessed[n])
|
||||
self.combobox_acoustic_data.addItem(stg.data_preprocessed[n])
|
||||
|
||||
self.plot_sample_position_on_transect()
|
||||
self.combobox_acoustic_data.currentIndexChanged.connect(self.update_plot_sample_position_on_transect)
|
||||
self.combobox_frequencies.currentIndexChanged.connect(self.update_plot_sample_position_on_transect)
|
||||
|
|
@ -1131,12 +1140,62 @@ class SampleDataTab(QWidget):
|
|||
# self.combobox_frequencies.currentTextChanged.connect(self.update_plot_sample_position_on_transect)
|
||||
|
||||
self.verticalLayout_groupbox_plot_transect.removeWidget(self.canvas_plot_sample_position_on_transect)
|
||||
|
||||
self.figure_plot_sample_position_on_transect, self.axis_plot_sample_position_on_transect = \
|
||||
plt.subplots(nrows=1, ncols=1, layout="constrained")
|
||||
self.canvas_plot_sample_position_on_transect = FigureCanvas(self.figure_plot_sample_position_on_transect)
|
||||
|
||||
self.verticalLayout_groupbox_plot_transect.addWidget(self.canvas_plot_sample_position_on_transect)
|
||||
|
||||
if stg.BS_stream_bed[self.combobox_acoustic_data.currentIndex()].shape != (0,):
|
||||
if stg.BS_stream_bed_pre_process_average[self.combobox_acoustic_data.currentIndex()].shape != (0,):
|
||||
|
||||
val_min = np.nanmin(stg.BS_stream_bed_pre_process_average[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :, :])
|
||||
val_max = np.nanmax(stg.BS_stream_bed_pre_process_average[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :, :])
|
||||
if val_min == 0:
|
||||
val_min = 1e-5
|
||||
|
||||
self.axis_plot_sample_position_on_transect.pcolormesh(
|
||||
stg.time_cross_section[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :],
|
||||
-stg.depth_cross_section[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :],
|
||||
stg.BS_stream_bed_pre_process_average[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :, :],
|
||||
cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max))
|
||||
|
||||
self.axis_plot_sample_position_on_transect.plot(
|
||||
stg.time_cross_section[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :],
|
||||
-stg.depth_bottom[self.combobox_acoustic_data.currentIndex()], color='black', linewidth=1,
|
||||
linestyle="solid")
|
||||
|
||||
elif stg.BS_stream_bed_pre_process_SNR[self.combobox_acoustic_data.currentIndex()].shape != (0,):
|
||||
|
||||
val_min = np.nanmin(stg.BS_stream_bed_pre_process_SNR[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :, :])
|
||||
val_max = np.nanmax(stg.BS_stream_bed_pre_process_SNR[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :, :])
|
||||
if val_min == 0:
|
||||
val_min = 1e-5
|
||||
|
||||
self.axis_plot_sample_position_on_transect.pcolormesh(
|
||||
stg.time_cross_section[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :],
|
||||
-stg.depth_cross_section[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :],
|
||||
stg.BS_stream_bed_pre_process_SNR[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :, :],
|
||||
cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max))
|
||||
|
||||
self.axis_plot_sample_position_on_transect.plot(
|
||||
stg.time_cross_section[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :],
|
||||
-stg.depth_bottom[self.combobox_acoustic_data.currentIndex()], color='black', linewidth=1,
|
||||
linestyle="solid")
|
||||
|
||||
elif stg.BS_stream_bed[self.combobox_acoustic_data.currentIndex()].shape != (0,):
|
||||
|
||||
val_min = np.nanmin(stg.BS_stream_bed[self.combobox_acoustic_data.currentIndex()][self.combobox_frequencies.currentIndex(), :, :])
|
||||
val_max = np.nanmax(stg.BS_stream_bed[self.combobox_acoustic_data.currentIndex()][self.combobox_frequencies.currentIndex(), :, :])
|
||||
|
|
@ -1153,6 +1212,46 @@ class SampleDataTab(QWidget):
|
|||
stg.time_cross_section[self.combobox_acoustic_data.currentIndex()][self.combobox_frequencies.currentIndex(), :],
|
||||
-stg.depth_bottom[self.combobox_acoustic_data.currentIndex()], color='black', linewidth=1, linestyle="solid")
|
||||
|
||||
elif stg.BS_cross_section_pre_process_average[self.combobox_acoustic_data.currentIndex()].shape != (0,):
|
||||
|
||||
val_min = np.nanmin(
|
||||
stg.BS_cross_section_pre_process_average[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :, :])
|
||||
val_max = np.nanmax(
|
||||
stg.BS_cross_section_pre_process_average[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :, :])
|
||||
if val_min == 0:
|
||||
val_min = 1e-5
|
||||
|
||||
self.axis_plot_sample_position_on_transect.pcolormesh(
|
||||
stg.time_cross_section[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :],
|
||||
-stg.depth_cross_section[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :],
|
||||
stg.BS_cross_section_pre_process_average[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :, :],
|
||||
cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max))
|
||||
|
||||
elif stg.BS_cross_section_pre_process_SNR[self.combobox_acoustic_data.currentIndex()].shape != (0,):
|
||||
|
||||
val_min = np.nanmin(
|
||||
stg.BS_cross_section_pre_process_SNR[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :, :])
|
||||
val_max = np.nanmax(
|
||||
stg.BS_cross_section_pre_process_SNR[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :, :])
|
||||
if val_min == 0:
|
||||
val_min = 1e-5
|
||||
|
||||
self.axis_plot_sample_position_on_transect.pcolormesh(
|
||||
stg.time_cross_section[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :],
|
||||
-stg.depth_cross_section[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :],
|
||||
stg.BS_cross_section_pre_process_SNR[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :, :],
|
||||
cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max))
|
||||
|
||||
elif stg.BS_cross_section[self.combobox_acoustic_data.currentIndex()].shape != (0,):
|
||||
|
||||
val_min = np.nanmin(
|
||||
|
|
@ -1168,6 +1267,38 @@ class SampleDataTab(QWidget):
|
|||
stg.BS_cross_section[self.combobox_acoustic_data.currentIndex()][self.combobox_frequencies.currentIndex(), :, :],
|
||||
cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max))
|
||||
|
||||
elif stg.BS_raw_data_pre_process_average[self.combobox_acoustic_data.currentIndex()].shape != (0,):
|
||||
|
||||
val_min = np.nanmin(stg.BS_raw_data_pre_process_average[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :, :])
|
||||
val_max = np.nanmax(stg.BS_raw_data_pre_process_average[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :, :])
|
||||
if val_min == 0:
|
||||
val_min = 1e-5
|
||||
|
||||
self.axis_plot_sample_position_on_transect.pcolormesh(
|
||||
stg.time[self.combobox_acoustic_data.currentIndex()][self.combobox_frequencies.currentIndex(), :],
|
||||
-stg.depth[self.combobox_acoustic_data.currentIndex()][self.combobox_frequencies.currentIndex(), :],
|
||||
stg.BS_raw_data_pre_process_average[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :, :],
|
||||
cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max))
|
||||
|
||||
elif stg.BS_raw_data_pre_process_SNR[self.combobox_acoustic_data.currentIndex()].shape != (0,):
|
||||
|
||||
val_min = np.nanmin(stg.BS_raw_data_pre_process_SNR[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :, :])
|
||||
val_max = np.nanmax(stg.BS_raw_data_pre_process_SNR[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :, :])
|
||||
if val_min == 0:
|
||||
val_min = 1e-5
|
||||
|
||||
self.axis_plot_sample_position_on_transect.pcolormesh(
|
||||
stg.time[self.combobox_acoustic_data.currentIndex()][self.combobox_frequencies.currentIndex(), :],
|
||||
-stg.depth[self.combobox_acoustic_data.currentIndex()][self.combobox_frequencies.currentIndex(), :],
|
||||
stg.BS_raw_data_pre_process_SNR[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :, :],
|
||||
cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max))
|
||||
|
||||
elif stg.BS_raw_data[self.combobox_acoustic_data.currentIndex()].shape != (0,):
|
||||
|
||||
val_min = np.nanmin(stg.BS_raw_data[self.combobox_acoustic_data.currentIndex()][self.combobox_frequencies.currentIndex(), :, :])
|
||||
|
|
@ -1190,7 +1321,59 @@ class SampleDataTab(QWidget):
|
|||
self.axis_plot_sample_position_on_transect.cla()
|
||||
|
||||
# --- Create canvas of Matplotlib figure ---
|
||||
if stg.BS_stream_bed[self.combobox_acoustic_data.currentIndex()].shape != (0,):
|
||||
if stg.BS_stream_bed_pre_process_average[self.combobox_acoustic_data.currentIndex()].shape != (0,):
|
||||
|
||||
val_min = np.nanmin(
|
||||
stg.BS_stream_bed_pre_process_average[self.combobox_acoustic_data.currentIndex()][self.combobox_frequencies.currentIndex(),
|
||||
:, :])
|
||||
val_max = np.nanmax(
|
||||
stg.BS_stream_bed_pre_process_average[self.combobox_acoustic_data.currentIndex()][self.combobox_frequencies.currentIndex(),
|
||||
:, :])
|
||||
if val_min == 0:
|
||||
val_min = 1e-5
|
||||
|
||||
self.axis_plot_sample_position_on_transect.pcolormesh(
|
||||
stg.time_cross_section[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :],
|
||||
-stg.depth_cross_section[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :],
|
||||
stg.BS_stream_bed_pre_process_average[self.combobox_acoustic_data.currentIndex()][self.combobox_frequencies.currentIndex(),
|
||||
:, :],
|
||||
cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max))
|
||||
|
||||
self.axis_plot_sample_position_on_transect.plot(
|
||||
stg.time_cross_section[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :],
|
||||
-stg.depth_bottom[self.combobox_acoustic_data.currentIndex()],
|
||||
color='black', linewidth=1, linestyle="solid")
|
||||
|
||||
elif stg.BS_stream_bed_pre_process_SNR[self.combobox_acoustic_data.currentIndex()].shape != (0,):
|
||||
|
||||
val_min = np.nanmin(
|
||||
stg.BS_stream_bed_pre_process_SNR[self.combobox_acoustic_data.currentIndex()][self.combobox_frequencies.currentIndex(),
|
||||
:, :])
|
||||
val_max = np.nanmax(
|
||||
stg.BS_stream_bed_pre_process_SNR[self.combobox_acoustic_data.currentIndex()][self.combobox_frequencies.currentIndex(),
|
||||
:, :])
|
||||
if val_min == 0:
|
||||
val_min = 1e-5
|
||||
|
||||
self.axis_plot_sample_position_on_transect.pcolormesh(
|
||||
stg.time_cross_section[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :],
|
||||
-stg.depth_cross_section[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :],
|
||||
stg.BS_stream_bed_pre_process_SNR[self.combobox_acoustic_data.currentIndex()][self.combobox_frequencies.currentIndex(),
|
||||
:, :],
|
||||
cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max))
|
||||
|
||||
self.axis_plot_sample_position_on_transect.plot(
|
||||
stg.time_cross_section[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :],
|
||||
-stg.depth_bottom[self.combobox_acoustic_data.currentIndex()],
|
||||
color='black', linewidth=1, linestyle="solid")
|
||||
|
||||
elif stg.BS_stream_bed[self.combobox_acoustic_data.currentIndex()].shape != (0,):
|
||||
|
||||
val_min = np.nanmin(stg.BS_stream_bed[self.combobox_acoustic_data.currentIndex()][self.combobox_frequencies.currentIndex(), :, :])
|
||||
val_max = np.nanmax(stg.BS_stream_bed[self.combobox_acoustic_data.currentIndex()][self.combobox_frequencies.currentIndex(), :, :])
|
||||
|
|
@ -1208,6 +1391,52 @@ class SampleDataTab(QWidget):
|
|||
-stg.depth_bottom[self.combobox_acoustic_data.currentIndex()],
|
||||
color='black', linewidth=1, linestyle="solid")
|
||||
|
||||
elif stg.BS_cross_section_pre_process_average[self.combobox_acoustic_data.currentIndex()].shape != (0,):
|
||||
|
||||
val_min = np.nanmin(
|
||||
stg.BS_cross_section_pre_process_average[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(),
|
||||
:, :])
|
||||
val_max = np.nanmax(
|
||||
stg.BS_cross_section_pre_process_average[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(),
|
||||
:, :])
|
||||
if val_min == 0:
|
||||
val_min = 1e-5
|
||||
|
||||
self.axis_plot_sample_position_on_transect.pcolormesh(
|
||||
stg.time_cross_section[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :],
|
||||
-stg.depth_cross_section[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :],
|
||||
stg.BS_cross_section_pre_process_average[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(),
|
||||
:, :],
|
||||
cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max))
|
||||
|
||||
elif stg.BS_cross_section_pre_process_SNR[self.combobox_acoustic_data.currentIndex()].shape != (0,):
|
||||
|
||||
val_min = np.nanmin(
|
||||
stg.BS_cross_section_pre_process_SNR[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(),
|
||||
:, :])
|
||||
val_max = np.nanmax(
|
||||
stg.BS_cross_section_pre_process_SNR[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(),
|
||||
:, :])
|
||||
if val_min == 0:
|
||||
val_min = 1e-5
|
||||
|
||||
self.axis_plot_sample_position_on_transect.pcolormesh(
|
||||
stg.time_cross_section[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :],
|
||||
-stg.depth_cross_section[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :],
|
||||
stg.BS_cross_section_pre_process_SNR[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(),
|
||||
:, :],
|
||||
cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max))
|
||||
|
||||
elif stg.BS_cross_section[self.combobox_acoustic_data.currentIndex()].shape != (0,):
|
||||
|
||||
val_min = np.nanmin(
|
||||
|
|
@ -1228,6 +1457,52 @@ class SampleDataTab(QWidget):
|
|||
:, :],
|
||||
cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max))
|
||||
|
||||
elif stg.BS_raw_data_pre_process_average[self.combobox_acoustic_data.currentIndex()].shape != (0,):
|
||||
|
||||
val_min = np.nanmin(
|
||||
stg.BS_raw_data_pre_process_average[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(),
|
||||
:, :])
|
||||
val_max = np.nanmax(
|
||||
stg.BS_raw_data_pre_process_average[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(),
|
||||
:, :])
|
||||
if val_min == 0:
|
||||
val_min = 1e-5
|
||||
|
||||
self.axis_plot_sample_position_on_transect.pcolormesh(
|
||||
stg.time[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :],
|
||||
-stg.depth[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :],
|
||||
stg.BS_raw_data_pre_process_average[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(),
|
||||
:, :],
|
||||
cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max))
|
||||
|
||||
elif stg.BS_raw_data_pre_process_SNR[self.combobox_acoustic_data.currentIndex()].shape != (0,):
|
||||
|
||||
val_min = np.nanmin(
|
||||
stg.BS_raw_data_pre_process_SNR[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(),
|
||||
:, :])
|
||||
val_max = np.nanmax(
|
||||
stg.BS_raw_data_pre_process_SNR[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(),
|
||||
:, :])
|
||||
if val_min == 0:
|
||||
val_min = 1e-5
|
||||
|
||||
self.axis_plot_sample_position_on_transect.pcolormesh(
|
||||
stg.time[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :],
|
||||
-stg.depth[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(), :],
|
||||
stg.BS_raw_data_pre_process_SNR[self.combobox_acoustic_data.currentIndex()][
|
||||
self.combobox_frequencies.currentIndex(),
|
||||
:, :],
|
||||
cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max))
|
||||
|
||||
elif stg.BS_raw_data[self.combobox_acoustic_data.currentIndex()].shape != (0,):
|
||||
|
||||
val_min = np.nanmin(
|
||||
|
|
|
|||
Loading…
Reference in New Issue