diff --git a/View/signal_processing_tab.py b/View/signal_processing_tab.py index b9f9cee..3d29e53 100644 --- a/View/signal_processing_tab.py +++ b/View/signal_processing_tab.py @@ -1084,23 +1084,20 @@ class SignalProcessingTab(QWidget): val_max = np.nanmax(stg.SNR_stream_bed[self.combobox_acoustic_data_choice.currentIndex()][f, :, :]) if val_min == val_max: levels = np.array([00.1, 1, 2, 10, 100, 1000, 1e6]) - bounds = [00.1, 1, 2, 10, 100, 1000, val_max, val_max * 1.2] + bounds = [00.1, 1, 2, 10, 100, 1000, val_max * 1.2] norm = BoundaryNorm(boundaries=bounds, ncolors=300) else: if val_min == 0: val_min = 1e-5 if val_max > 1000: levels = np.array([00.1, 1, 2, 10, 100, 1000, 1e6]) - bounds = [00.1, 1, 2, 10, 100, 1000, val_max, val_max * 1.2] + bounds = [00.1, 1, 2, 10, 100, 1000, val_max * 1.2] norm = BoundaryNorm(boundaries=bounds, ncolors=300) else: - levels = np.array([00.1, 1, 2, 10, 100, val_max]) - bounds = [00.1, 1, 2, 10, 100, 1000, val_max * 1000] + levels = np.array([00.1, 1, 2, 10, 100, 1000, val_max * 1000 + 1]) + bounds = [00.1, 1, 2, 10, 100, 1000, val_max * 1000 + 1] norm = BoundaryNorm(boundaries=bounds, ncolors=300) - bounds = [00.1, 1, 2, 10, 100, 1000, val_max, val_max * 1.2] - norm = BoundaryNorm(boundaries=bounds, ncolors=300) - cf = (self.axis_SNR[f].contourf(x, -y, stg.SNR_stream_bed[self.combobox_acoustic_data_choice.currentIndex()][f, :, :], levels, cmap='gist_rainbow', @@ -1140,24 +1137,21 @@ class SignalProcessingTab(QWidget): val_max = np.nanmax(stg.SNR_cross_section[self.combobox_acoustic_data_choice.currentIndex()][f, :, :]) if val_min == val_max: levels = np.array([00.1, 1, 2, 10, 100, 1000, 1e6]) - bounds = [00.1, 1, 2, 10, 100, 1000, val_max, val_max * 1.2] + bounds = [00.1, 1, 2, 10, 100, 1000, val_max * 1.2] norm = BoundaryNorm(boundaries=bounds, ncolors=300) else: if val_min == 0: val_min = 1e-5 if val_max > 1000: levels = np.array([00.1, 1, 2, 10, 100, 1000, 1e6]) - bounds = [00.1, 1, 2, 10, 100, 1000, val_max, val_max * 1.2] + bounds = [00.1, 1, 2, 10, 100, 1000, val_max * 1.2] norm = BoundaryNorm(boundaries=bounds, ncolors=300) else: - levels = np.array([00.1, 1, 2, 10, 100, val_max]) - bounds = [00.1, 1, 2, 10, 100, 1000, val_max * 1000] + levels = np.array([00.1, 1, 2, 10, 100, 1000, val_max * 1000 + 1]) + bounds = [00.1, 1, 2, 10, 100, 1000, val_max * 1000 + 1] norm = BoundaryNorm(boundaries=bounds, ncolors=300) - bounds = [00.1, 1, 2, 10, 100, 1000, val_max, val_max * 1.2] - norm = BoundaryNorm(boundaries=bounds, ncolors=300) - cf = (self.axis_SNR[f].contourf(x, -y, stg.SNR_cross_section[ self.combobox_acoustic_data_choice.currentIndex()][f, :, :], @@ -1172,18 +1166,18 @@ class SignalProcessingTab(QWidget): val_max = np.nanmax(stg.SNR_raw_data[self.combobox_acoustic_data_choice.currentIndex()][f, :, :]) if val_min == val_max: levels = np.array([00.1, 1, 2, 10, 100, 1000, 1e6]) - bounds = [00.1, 1, 2, 10, 100, 1000, val_max, val_max * 1.2] + bounds = [00.1, 1, 2, 10, 100, 1000, val_max * 1.2] norm = BoundaryNorm(boundaries=bounds, ncolors=300) else: if val_min == 0: val_min = 1e-5 if val_max > 1000: levels = np.array([00.1, 1, 2, 10, 100, 1000, 1e6]) - bounds = [00.1, 1, 2, 10, 100, 1000, val_max, val_max * 1.2] + bounds = [00.1, 1, 2, 10, 100, 1000, val_max * 1.2] norm = BoundaryNorm(boundaries=bounds, ncolors=300) else: - levels = np.array([00.1, 1, 2, 10, 100, val_max]) - bounds = [00.1, 1, 2, 10, 100, 1000, val_max * 1000] + levels = np.array([00.1, 1, 2, 10, 100, 1000, val_max*1000 + 1]) + bounds = [00.1, 1, 2, 10, 100, 1000, val_max * 1000 + 1] norm = BoundaryNorm(boundaries=bounds, ncolors=300) cf = (self.axis_SNR[f].contourf(x, -y,