diff --git a/View/sediment_calibration_tab.py b/View/sediment_calibration_tab.py
index b46168b..eba470b 100644
--- a/View/sediment_calibration_tab.py
+++ b/View/sediment_calibration_tab.py
@@ -1,13 +1,33 @@
-import sys
+# ============================================================================== #
+ # acoustic_data_tab.py - AcouSed #
+ # Copyright (C) 2024 INRAE #
+ # #
+ # This program is free software: you can redistribute it and/or modify #
+ # it under the terms of the GNU General Public License as published by #
+ # the Free Software Foundation, either version 3 of the License, or #
+ # (at your option) any later version. #
+ # #
+ # This program is distributed in the hope that it will be useful, #
+ # but WITHOUT ANY WARRANTY; without even the implied warranty of #
+ # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the #
+ # GNU General Public License for more details. #
+ # #
+ # You should have received a copy of the GNU General Public License #
+ # along with this program. If not, see . #
+
+ # by Brahim MOUDJED #
+# ============================================================================== #
+
+# -*- coding: utf-8 -*-
+
import matplotlib.pyplot as plt
import pandas as pd
-from PyQt5.QtWidgets import (QWidget, QMainWindow, QApplication, QVBoxLayout, QHBoxLayout, QGroupBox, QComboBox,
- QGridLayout, QLabel, QPushButton, QSpinBox, QDoubleSpinBox, QAbstractSpinBox, QSpacerItem,
- QSizePolicy, QSlider, QLineEdit, QDial, QFileDialog, QMessageBox, QFrame)
+from PyQt5.QtWidgets import (QWidget, QVBoxLayout, QHBoxLayout, QGroupBox, QComboBox,
+ QGridLayout, QLabel, QPushButton, QSlider, QLineEdit, QFileDialog, QMessageBox, QFrame)
-from PyQt5.QtCore import QCoreApplication, Qt, QPropertyAnimation, QSize
-from PyQt5.QtGui import QStandardItemModel, QIcon, QPixmap, QFont
+from PyQt5.QtCore import Qt, QPropertyAnimation, QSize
+from PyQt5.QtGui import QIcon, QPixmap, QFont
import settings as stg
@@ -24,14 +44,6 @@ from os import path
from View.checkable_combobox import CheckableComboBox
from Model.acoustic_inversion_method_high_concentration import AcousticInversionMethodHighConcentration
-from settings import J_cross_section, alpha_s
-
-
-# from settings import depth_cross_section, BS_raw_data_pre_process_average, BS_raw_data_pre_process_SNR, BS_raw_data, \
-# path_calibration_file
-
-
-# from virtual_env.bin.odfimg import directory
class SedimentCalibrationTab(QWidget):
@@ -323,9 +335,6 @@ class SedimentCalibrationTab(QWidget):
self.label_ks.setText("ks")
self.gridLayout_groupbox_sediment_calibration_parameter.addWidget(self.label_ks, 4, 0, 1, 1, Qt.AlignCenter)
- # self.spinbox_ks_freq1 = QDoubleSpinBox()
- # self.spinbox_ks_freq1.setDecimals(8)
- # self.spinbox_ks_freq1.setSuffix(" m/kg^0.5")
self.lineEdit_ks_freq1 = QLineEdit()
self.lineEdit_ks_freq1.setMaximumWidth(100)
self.lineEdit_ks_freq1.setText("0.00")
@@ -336,9 +345,6 @@ class SedimentCalibrationTab(QWidget):
self.gridLayout_groupbox_sediment_calibration_parameter.addWidget(self.label_ks_freq1_unit, 4, 2, 1, 1,
Qt.AlignLeft)
- # self.spinbox_ks_freq2 = QDoubleSpinBox()
- # self.spinbox_ks_freq2.setDecimals(8)
- # self.spinbox_ks_freq2.setSuffix(" m/kg^0.5")
self.lineEdit_ks_freq2 = QLineEdit()
self.lineEdit_ks_freq2.setMaximumWidth(100)
self.lineEdit_ks_freq2.setText("0.00")
@@ -353,9 +359,6 @@ class SedimentCalibrationTab(QWidget):
self.label_sv.setText("sv")
self.gridLayout_groupbox_sediment_calibration_parameter.addWidget(self.label_sv, 5, 0, 1, 1, Qt.AlignCenter)
- # self.spinbox_sv_freq1 = QDoubleSpinBox()
- # self.spinbox_sv_freq1.setDecimals(8)
- # self.spinbox_sv_freq1.setSuffix(" /m")
self.lineEdit_sv_freq1 = QLineEdit()
self.lineEdit_sv_freq1.setMaximumWidth(100)
self.lineEdit_sv_freq1.setText("0.00")
@@ -365,9 +368,6 @@ class SedimentCalibrationTab(QWidget):
self.label_sv_freq1_unit.setText("m-1")
self.gridLayout_groupbox_sediment_calibration_parameter.addWidget(self.label_sv_freq1_unit, 5, 2, 1, 1)
- # self.spinbox_sv_freq2 = QDoubleSpinBox()
- # self.spinbox_sv_freq2.setDecimals(8)
- # self.spinbox_sv_freq2.setSuffix(" /m")
self.lineEdit_sv_freq2 = QLineEdit()
self.lineEdit_sv_freq2.setMaximumWidth(100)
self.lineEdit_sv_freq2.setText("0.00")
@@ -381,8 +381,6 @@ class SedimentCalibrationTab(QWidget):
self.label_X.setText("X")
self.gridLayout_groupbox_sediment_calibration_parameter.addWidget(self.label_X, 6, 0, 1, 1, Qt.AlignCenter)
- # self.spinbox_X = QDoubleSpinBox()
- # self.spinbox_X.setDecimals(2)
self.lineEdit_X = QLineEdit()
self.lineEdit_X.setMaximumWidth(100)
self.lineEdit_X.setText("0.00")
@@ -392,9 +390,6 @@ class SedimentCalibrationTab(QWidget):
self.label_alphas.setText("\u03B1s")
self.gridLayout_groupbox_sediment_calibration_parameter.addWidget(self.label_alphas, 7, 0, 1, 1, Qt.AlignCenter)
- # self.spinbox_alphas_freq1 = QDoubleSpinBox()
- # self.spinbox_alphas_freq1.setDecimals(4)
- # self.spinbox_alphas_freq1.setSuffix(" /m")
self.lineEdit_alphas_freq1 = QLineEdit()
self.lineEdit_alphas_freq1.setMaximumWidth(100)
self.lineEdit_alphas_freq1.setText("0.00")
@@ -404,9 +399,6 @@ class SedimentCalibrationTab(QWidget):
self.label_alphas_freq1_unit.setText("m-1")
self.gridLayout_groupbox_sediment_calibration_parameter.addWidget(self.label_alphas_freq1_unit, 7, 2, 1, 1, Qt.AlignLeft)
- # self.spinbox_alphas_freq2 = QDoubleSpinBox()
- # self.spinbox_alphas_freq2.setDecimals(4)
- # self.spinbox_alphas_freq2.setSuffix(" /m")
self.lineEdit_alphas_freq2 = QLineEdit()
self.lineEdit_alphas_freq2.setMaximumWidth(100)
self.lineEdit_alphas_freq2.setText("0.00")
@@ -420,9 +412,6 @@ class SedimentCalibrationTab(QWidget):
self.label_zeta.setText("\u03B6")
self.gridLayout_groupbox_sediment_calibration_parameter.addWidget(self.label_zeta, 8, 0, 1, 1, Qt.AlignCenter)
- # self.spinbox_zeta_freq1 = QDoubleSpinBox()
- # self.spinbox_zeta_freq1.setDecimals(4)
- # self.spinbox_zeta_freq1.setSuffix(" /m")
self.lineEdit_zeta_freq1 = QLineEdit()
self.lineEdit_zeta_freq1.setMaximumWidth(100)
self.lineEdit_zeta_freq1.setText("0.00")
@@ -433,9 +422,6 @@ class SedimentCalibrationTab(QWidget):
self.gridLayout_groupbox_sediment_calibration_parameter.addWidget(self.label_zeta_freq1_unit, 8, 2, 1, 1,
Qt.AlignLeft)
- # self.spinbox_zeta_freq2 = QDoubleSpinBox()
- # self.spinbox_zeta_freq2.setDecimals(4)
- # self.spinbox_zeta_freq2.setSuffix(" /m")
self.lineEdit_zeta_freq2 = QLineEdit()
self.lineEdit_zeta_freq2.setMaximumWidth(100)
self.lineEdit_zeta_freq2.setText("0.00")
@@ -450,22 +436,6 @@ class SedimentCalibrationTab(QWidget):
self.pushbutton_save_calibration.setText("Save calibration")
self.gridLayout_groupbox_sediment_calibration_parameter.addWidget(self.pushbutton_save_calibration,9, 5, 1, 1)
- # self.groupbox_calibration_compute_size_change()
-
- # self.animaiton_groupbox_compute = QPropertyAnimation(self.groupbox_sediment_calibration_compute, b"size")
- # self.animaiton_groupbox_compute.setStartValue(QSize(self.groupbox_sediment_calibration_compute.width(), 25))
- #
- # self.animaiton_groupbox_compute.start()
-
- # setStartValue(QSize(self.groupbox_sediment_calibration_compute.width(),
- # self.groupbox_sediment_calibration_compute.height()))
- #
- # self.animaiton_groupbox_compute.setEndValue(
- # QSize(self.groupbox_sediment_calibration_compute.width(),
- # self.groupbox_sediment_calibration_compute.sizeHint().height()))
- # else:
- # self.animaiton_groupbox_compute.setEndValue(QSize(self.groupbox_sediment_calibration_compute.width(), 25))
-
# ++++++++++++++++++++
# +++ Groupbox FCB +++
@@ -814,7 +784,6 @@ class SedimentCalibrationTab(QWidget):
elif stg.BS_stream_bed[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
- print("totototototototoott")
val_min = np.nanmin(
stg.BS_stream_bed[self.combobox_acoustic_data_choice.currentIndex()][self.combobox_freq2.currentIndex(),
:, :])
@@ -1066,8 +1035,6 @@ class SedimentCalibrationTab(QWidget):
cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max))
# --- Plot samples ---
- print("stg.fine_sample_profile ", stg.fine_sample_profile)
- print("stg.sand_sample_target ", stg.sand_sample_target)
if (stg.fine_sample_profile) or (stg.sand_sample_target):
@@ -1150,8 +1117,6 @@ class SedimentCalibrationTab(QWidget):
self.combobox_freq2.currentIndex(), :],
color='red', linestyle="solid", linewidth=2))
- # self.axis_BS.set_xticks([])
- # self.axis_BS.set_yticks([])
self.axis_BS.set_xlabel("Time (sec)")
self.axis_BS.set_ylabel("Depth (m)")
self.fig_BS.canvas.draw_idle()
@@ -1159,13 +1124,11 @@ class SedimentCalibrationTab(QWidget):
def sample_choice_for_calibration(self):
# --- List selected fine samples ---
stg.fine_sample_profile = [(f, int(f[1:]) - 1) for f in self.combobox_fine_sample_choice.currentData()]
- print(f"stg.fine_sample_profile : {stg.fine_sample_profile}")
# --- List selected sand samples ---
# stg.sand_sample_target = [(s, int(s[1:]) - 1) for s in self.combobox_sand_sample_choice.currentData()]
stg.sand_sample_target = [(self.combobox_sand_sample_choice.currentText(),
self.combobox_sand_sample_choice.currentIndex())]
- print(f"stg.sand_sample_target : {stg.sand_sample_target}")
# --- Find index in time (along acoustic recording) of sand sample target ---
if stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
@@ -1232,7 +1195,6 @@ class SedimentCalibrationTab(QWidget):
)
stg.sand_sample_target_indice = [(d1, t1), (d2, t2)]
- print("stg.sand_sample_target_indice ", stg.sand_sample_target_indice)
def summary_samples_choices(self):
@@ -1260,17 +1222,9 @@ class SedimentCalibrationTab(QWidget):
for p in range(len(fine_data)):
for q in range(len(fine_data[0])):
- # exec("fine_label[" + str(p) + "]_" + "stg.fine_sample_profile[" + str(p) + "][0]" + " = QLabel()")
- # eval("fine_label[" + str(p) + "]_" + "stg.fine_sample_profile[" + str(p) + "][0]" + ".setText(" + "fine_data[" + str(p) + "][" + str(q) + "])")
- # eval("self.gridLayout_groupbox_interpolate_info.addWidget(" + "fine_label[" + str(p) + "]_" + "stg.fine_sample_profile[" + str(p) + "], " + str(1+p) + ", " + str(q) + ", 1, 1)")
print(f"self.gridLayout_groupbox_interpolate_info.addWidget(QLabel(fine_data[{p}][{q}]), {2 + p}, {q}, 1, 1, Qt.AlignCenter)")
eval(f"self.gridLayout_groupbox_interpolate_info.addWidget(QLabel(fine_data[{p}][{q}]), {2 + p}, {q}, 1, 1, Qt.AlignCenter)")
- # self.double_horizontal_line = QFrame()
- # self.double_horizontal_line.setFrameShape(QFrame.HLine)
- # self.double_horizontal_line.setFrameShadow(QFrame.Sunken)
- # self.double_horizontal_line.setLineWidth(1)
- # self.double_horizontal_line.setMidLineWidth(3)
self.gridLayout_groupbox_interpolate_info.addWidget(self.double_horizontal_line, 2 + len(fine_data), 0, 1, 4, Qt.AlignCenter)
sand_head = ["Sample", "Depth (m)", "time", "Csand (g/L)"]
@@ -1363,8 +1317,6 @@ class SedimentCalibrationTab(QWidget):
)
)
- # print(f"range_lin_interp : {range_lin_interp}")
- # print(f"M_profile_fine : {M_profile_fine}")
else:
if stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
@@ -1405,118 +1357,12 @@ class SedimentCalibrationTab(QWidget):
]
))
- print(f"1 M_profile_fine : {stg.M_profile_fine}")
stg.range_lin_interp = stg.range_lin_interp
stg.M_profile_fine = stg.M_profile_fine
stg.M_profile_fine = stg.M_profile_fine[:stg.range_lin_interp.shape[0]]
- print(f"2 M_profile_fine : {stg.M_profile_fine}")
self.plot_profile_of_concentration_fine()
- # def range_cells_function(self):
- # """ Computing the real cell size, that depends on the temperature """
- #
- # # defaut Aquascat cell size
- # aquascat_cell_size = stg.r[0, 1] - stg.r[0, 0]
- # # Pulse duration
- # tau = aquascat_cell_size * 2 / 1500 # figure 2.9 1500 vitesse du son entrée pour le paramètrage des mesures aquascat
- # # Sound speed
- # cel = self.inv_hc.water_velocity(self.spinbox_temperature_water_attenuation.value())
- # # Real cell size
- # real_cell_size = cel * tau / 2 # voir fig 2.9
- #
- # # Converting to real cell profile
- # real_r = stg.r / aquascat_cell_size * real_cell_size # (/ aquascat_cell_size) pour ramener BS.r entre 0 et 1
- # # (* real_cell_size) pour remettre les échelles spatiales sur la taille réelle des cellules
- #
- # # R with right shape (numpy array)
- # R_real = real_r # np.repeat(real_r, len(stg.freq), axis=1)
- #
- # return R_real
-
-
- # def compute_FCB(self):
- #
- # print(f"self.range_cells_function() : {self.range_cells_function()}")
- # print(f"self.range_cells_function() shape : {self.range_cells_function().shape}")
- # R_real = np.repeat(self.range_cells_function()[:, :, np.newaxis], stg.t.shape[1], axis=2)
- # print(f"R_real shape : {R_real.shape}")
- # if (stg.BS_stream_bed_pre_process_average.size == 0) and (stg.BS_stream_bed_pre_process_SNR.size == 0):
- # stg.FCB = (np.log(stg.BS_stream_bed) + np.log(R_real) +
- # 2 * stg.water_attenuation * R_real)
- # elif stg.BS_stream_bed_pre_process_SNR.size == 0:
- # stg.FCB = (np.log(stg.BS_stream_bed_pre_process_average) + np.log(R_real) +
- # 2 * stg.water_attenuation * R_real)
- # else:
- # stg.FCB = (np.log(stg.BS_stream_bed_pre_process_SNR) + np.log(R_real) +
- # 2 * stg.water_attenuation * R_real)
- # self.plot_FCB()
-
- # def fit_FCB_profile_with_linear_regression_and_compute_alphaS(self):
- #
- # if stg.FCB.size == 0:
- # msgBox = QMessageBox()
- # msgBox.setWindowTitle("Linear regression error")
- # msgBox.setIcon(QMessageBox.Warning)
- # msgBox.setText("Please compute FCB before")
- # msgBox.setStandardButtons(QMessageBox.Ok)
- # msgBox.exec()
- # else:
- # try:
- # y0 = stg.FCB[self.combobox_frequency_compute_alphaS.currentIndex(), :, self.slider.value()]
- # y = y0[np.where(np.isnan(y0) == False)]
- #
- # x0 = stg.r[0, :].reshape(-1)
- # x = x0[np.where(np.isnan(y0) == False)]
- #
- # value1 = np.where(np.round(np.abs(x - self.spinbox_alphaS_computation_from.value()), 2)
- # == np.min(np.round(np.abs(x - self.spinbox_alphaS_computation_from.value()), 2)))
- # value2 = np.where(np.round(np.abs(x - self.spinbox_alphaS_computation_to.value()), 2)
- # == np.min(np.round(np.abs(x - self.spinbox_alphaS_computation_to.value()), 2)))
- #
- # # print(np.round(np.abs(x - self.spinbox_alphaS_computation_from.value()), 2))
- # # # print("value1 ", value1[0][0])
- # # print(np.round(np.abs(x - self.spinbox_alphaS_computation_to.value()), 2))
- # # print("value2 ", value2[0][0])
- #
- # # print("y limited ", y[value1[0][0]:value2[0][0]])
- #
- # lin_reg_compute = stats.linregress(x[value1[0][0]:value2[0][0]], y[value1[0][0]:value2[0][0]])
- # except ValueError:
- # msgBox = QMessageBox()
- # msgBox.setWindowTitle("Linear regression error")
- # msgBox.setIcon(QMessageBox.Warning)
- # msgBox.setText("Please check boundaries to fit a linear line")
- # msgBox.setStandardButtons(QMessageBox.Ok)
- # msgBox.exec()
- # else:
- # stg.lin_reg = (lin_reg_compute.slope, lin_reg_compute.intercept)
- # # print(f"y = {stg.lin_reg[0]}x + {stg.lin_reg[1]}")
- #
- # self.label_alphaS.clear()
- # self.label_alphaS.setText(f"\u03B1s = {-0.5*stg.lin_reg[0]:.4f} dB/m")
- #
- # # for i, value_freq in enumerate(stg.freq):
- # # for k, value_t in enumerate(stg.t):
- # # # print(f"indice i: {i}, indice k: {k}")
- # # # print(f"values of FCB: {stg.FCB[:, i, k]}")
- # # y = stg.FCB[:, i, k]
- # # # print("y : ", y)
- # # # print(f"values of FCB where FCB is not Nan {y[np.where(np.isnan(y) == False)]}")
- # # # print(f"values of r where FCB is not Nan {x[np.where(np.isnan(y) == False)]}")
- # # lin_reg_compute = stats.linregress(x[np.where(np.isnan(y) == False)], y[np.where(np.isnan(y) == False)])
- # # lin_reg_tuple = (lin_reg_compute.slope, lin_reg_compute.intercept)
- # # stg.lin_reg.append(lin_reg_tuple)
- #
- # # print(f"y = {lin_reg.slope}x + {lin_reg.intercept}")
- #
- # # plt.figure()
- # # plt.plot(stg.r, stg.FCB[:, 0, 825], 'k-', stg.r, lin_reg.slope*stg.r + lin_reg.intercept, "b--")
- # # plt.show()
- #
- # # print("lin_reg length ", len(stg.lin_reg))
- # # print("lin_reg ", stg.lin_reg)
-
# ------------------------------------------------------------------
# --------------- Functions for sediment calibration ---------------
# ------------------------------------------------------------------
@@ -1551,7 +1397,6 @@ class SedimentCalibrationTab(QWidget):
self.groupbox_sediment_calibration_import.setChecked(False)
def groupbox_calibration_compute_size_change(self):
- print("self.groupbox_sediment_calibration_compute.isChecked() ", self.groupbox_sediment_calibration_compute.isChecked())
duration = 500
self.animaiton_groupbox_compute = QPropertyAnimation(self.groupbox_sediment_calibration_compute, b"size")
@@ -1561,12 +1406,10 @@ class SedimentCalibrationTab(QWidget):
self.groupbox_sediment_calibration_compute.height()))
if self.groupbox_sediment_calibration_compute.isChecked():
- print("Checked")
self.animaiton_groupbox_compute.setEndValue(
QSize(self.groupbox_sediment_calibration_compute.width(),
self.groupbox_sediment_calibration_compute.sizeHint().height()))
else:
- print("Non Checked")
self.animaiton_groupbox_compute.setEndValue(QSize(self.groupbox_sediment_calibration_compute.width(), 25))
self.animaiton_groupbox_compute.start()
@@ -1631,9 +1474,6 @@ class SedimentCalibrationTab(QWidget):
# --- Read calibration file ---
data = pd.read_csv(stg.path_calibration_file + "/" + stg.filename_calibration_file, header=0, index_col=0)
- print(data.head())
- print(data.iloc[0][0])
- print(type(data.iloc[0][0]))
# --- Fill spinboxes of calibration parameter ---
self.label_temperature.clear()
@@ -1641,10 +1481,7 @@ class SedimentCalibrationTab(QWidget):
self.label_freq1.clear()
self.label_freq1.setText(data.columns[0])
- print(stg.freq_text)
- print(stg.freq_text[self.combobox_acoustic_data_choice.currentIndex()])
- print(data.columns[0])
- print("index freq1 ", np.where(np.asarray(stg.freq_text[self.combobox_acoustic_data_choice.currentIndex()]) == data.columns[0]))
+
index_freq1 = np.where(np.asarray(stg.freq_text[self.combobox_acoustic_data_choice.currentIndex()]) ==
data.columns[0])[0][0]
stg.frequencies_for_calibration.clear()
@@ -1654,11 +1491,9 @@ class SedimentCalibrationTab(QWidget):
self.label_freq2.clear()
self.label_freq2.setText(data.columns[1])
- print("index freq2 ",
- np.where(np.asarray(stg.freq_text[self.combobox_acoustic_data_choice.currentIndex()]) == data.columns[1]))
+
index_freq2 = np.where(np.asarray(stg.freq_text[self.combobox_acoustic_data_choice.currentIndex()]) ==
data.columns[1])[0][0]
- # stg.frequencies_for_calibration.clear()
stg.frequencies_for_calibration.append((stg.freq[self.combobox_acoustic_data_choice.currentIndex()][
index_freq2],
index_freq2))
@@ -1667,77 +1502,52 @@ class SedimentCalibrationTab(QWidget):
stg.frequency_for_inversion = (stg.freq[self.combobox_acoustic_data_choice.currentIndex()][index_freq2],
index_freq2)
- # self.spinbox_ks_freq1.clear()
- # self.spinbox_ks_freq1.setValue()
self.lineEdit_ks_freq1.clear()
self.lineEdit_ks_freq1.setText(str("%.5f" % float(data.iloc[0][0])))
- # self.spinbox_ks_freq2.clear()
- # self.spinbox_ks_freq2.setValue(float(data.iloc[0][1]))
self.lineEdit_ks_freq2.clear()
self.lineEdit_ks_freq2.setText(str("%.5f" % float(data.iloc[0][1])))
stg.ks.clear()
- # stg.ks = [self.spinbox_ks_freq1.value(), self.spinbox_ks_freq2.value()]
stg.ks = [float(self.lineEdit_ks_freq1.text()), float(self.lineEdit_ks_freq2.text())]
- # self.spinbox_sv_freq1.clear()
- # self.spinbox_sv_freq1.setValue(float(data.iloc[1][0]))
self.lineEdit_sv_freq1.clear()
self.lineEdit_sv_freq1.setText(str("%.5f" % float(data.iloc[1][0])))
- # self.spinbox_sv_freq2.clear()
- # self.spinbox_sv_freq2.setValue(float(data.iloc[1][1]))
self.lineEdit_sv_freq2.clear()
self.lineEdit_sv_freq2.setText(str("%.5f" % float(data.iloc[1][1])))
stg.sv.clear()
- # stg.sv = [self.spinbox_sv_freq1.value(), self.spinbox_sv_freq2.value()]
stg.sv = [float(self.lineEdit_sv_freq1.text()), float(self.lineEdit_sv_freq2.text())]
- # self.spinbox_X.clear()
- # self.spinbox_X.setValue(float(data.iloc[2][0]))
self.lineEdit_X.clear()
self.lineEdit_X.setText(str("%.2f" % float(data.iloc[2][0])))
stg.X_exponent.clear()
- # stg.X_exponent.append(self.spinbox_X.value())
stg.X_exponent.append(float(self.lineEdit_X.text()))
- # self.spinbox_alphas_freq1.clear()
- # self.spinbox_alphas_freq1.setValue(float(data.iloc[3][0]))
self.lineEdit_alphas_freq1.clear()
self.lineEdit_alphas_freq1.setText(str("%.5f" % float(data.iloc[3][0])))
- # self.spinbox_alphas_freq2.clear()
- # self.spinbox_alphas_freq2.setValue(float(data.iloc[3][1]))
self.lineEdit_alphas_freq2.clear()
self.lineEdit_alphas_freq2.setText(str("%.5f" % float(data.iloc[3][1])))
stg.alpha_s.clear()
- # stg.alpha_s = [self.spinbox_alphas_freq1.value(), self.spinbox_alphas_freq2.value()]
stg.alpha_s = [float(self.lineEdit_alphas_freq1.text()), float(self.lineEdit_alphas_freq2.text())]
- # self.spinbox_zeta_freq1.clear()
- # self.spinbox_zeta_freq1.setValue(float(data.iloc[4][0]))
self.lineEdit_zeta_freq1.clear()
self.lineEdit_zeta_freq1.setText(str("%.5f" % float(data.iloc[4][0])))
- # self.spinbox_zeta_freq2.clear()
- # self.spinbox_zeta_freq2.setValue(float(data.iloc[4][1]))
self.lineEdit_zeta_freq2.clear()
self.lineEdit_zeta_freq2.setText(str("%.5f" % float(data.iloc[4][1])))
stg.zeta.clear()
- # stg.zeta = [self.spinbox_zeta_freq1.value(), self.spinbox_zeta_freq2.value()]
stg.zeta = [float(self.lineEdit_zeta_freq1.text()), float(self.lineEdit_zeta_freq2.text())]
- # self.compute_depth_2D()
self.compute_kt2D_kt3D()
self.compute_J_cross_section()
def compute_depth_2D(self):
- print("self.combobox_acoustic_data_choice.count() ", self.combobox_acoustic_data_choice.count())
if self.combobox_acoustic_data_choice.count() > 0:
for k in range(self.combobox_acoustic_data_choice.count()):
@@ -1805,9 +1615,6 @@ class SedimentCalibrationTab(QWidget):
stg.time[k].shape[1],
axis=1))
- print("stg.depth_2D[self.combobox_acoustic_data_choice.currentIndex()].shape ",
- stg.depth_2D[self.combobox_acoustic_data_choice.currentIndex()].shape)
-
def function_pushbutton_compute_calibration(self):
self.label_temperature.clear()
@@ -1846,13 +1653,9 @@ class SedimentCalibrationTab(QWidget):
print(f"ks for frequency of {stg.freq[self.combobox_acoustic_data_choice.currentIndex()][self.combobox_freq1.currentIndex()]} : {ks_freq1} m/kg^0.5 \n")
print(f"ks for frequency of {stg.freq[self.combobox_acoustic_data_choice.currentIndex()][self.combobox_freq2.currentIndex()]} : {ks_freq2} m/kg^0.5")
- # self.spinbox_ks_freq1.clear()
- # self.spinbox_ks_freq1.setValue(ks_freq1)
self.lineEdit_ks_freq1.clear()
self.lineEdit_ks_freq1.setText(str("%.5f" % ks_freq1))
- # self.spinbox_ks_freq2.clear()
- # self.spinbox_ks_freq2.setValue(ks_freq2)
self.lineEdit_ks_freq2.clear()
self.lineEdit_ks_freq2.setText(str("%.5f" % ks_freq2))
@@ -1867,13 +1670,9 @@ class SedimentCalibrationTab(QWidget):
print(f"sv for frequency of {stg.freq[self.combobox_acoustic_data_choice.currentIndex()][self.combobox_freq1.currentIndex()]} : {sv_freq1:.8f} /m \n")
print(f"sv for frequency of {stg.freq[self.combobox_acoustic_data_choice.currentIndex()][self.combobox_freq2.currentIndex()]} : {sv_freq2:.8f} /m")
- # self.spinbox_sv_freq1.clear()
- # self.spinbox_sv_freq1.setValue(sv_freq1)
self.lineEdit_sv_freq1.clear()
self.lineEdit_sv_freq1.setText(str("%.5f" % sv_freq1))
- # self.spinbox_sv_freq2.clear()
- # self.spinbox_sv_freq2.setValue(sv_freq2)
self.lineEdit_sv_freq2.clear()
self.lineEdit_sv_freq2.setText(str("%.5f" % sv_freq2))
@@ -1889,8 +1688,6 @@ class SedimentCalibrationTab(QWidget):
print(f"Exponent X = {X_exponent:.2f}\n")
- # self.spinbox_X.clear()
- # self.spinbox_X.setValue(X_exponent)
self.lineEdit_X.setText(str("%.2f" % X_exponent))
def compute_kt2D_kt3D(self):
@@ -1957,25 +1754,16 @@ class SedimentCalibrationTab(QWidget):
stg.kt2D[i] = np.repeat(np.array([stg.kt_read]).transpose(), stg.time[i].shape[1], axis=1)
stg.kt3D[i] = np.repeat(stg.kt2D[i][:, np.newaxis, :], stg.depth[i].shape[1], axis=1)
- print('kt2D ', stg.kt2D)
- print('kt3D ', stg.kt3D)
-
def compute_J_cross_section(self):
for i in range(self.combobox_acoustic_data_choice.count()):
- print('kt2D shape ', stg.kt2D[i].shape)
- print('kt3D shape ', stg.kt3D[i].shape)
-
J_cross_section_freq1 = np.array([])
J_cross_section_freq2 = np.array([])
# --- Compute J ---
if stg.BS_stream_bed_pre_process_average[i].shape != (0,):
- print("000000000000000000000000000000000")
- print(stg.BS_stream_bed_pre_process_average[i][stg.frequencies_for_calibration[0][1], :, :].shape,
- stg.depth_2D[i][stg.frequencies_for_calibration[0][1], :, :].shape,
- stg.kt3D[i][stg.frequencies_for_calibration[0][1], :, :].shape)
+
J_cross_section_freq1 = self.inv_hc.j_cross_section(
BS=stg.BS_stream_bed_pre_process_average[i][
stg.frequencies_for_calibration[0][1], :, :],
@@ -2110,9 +1898,6 @@ class SedimentCalibrationTab(QWidget):
stg.J_cross_section[i][0] = J_cross_section_freq1
stg.J_cross_section[i][1] = J_cross_section_freq2
- print(f"J_cross_section {str(i)} freq1 shape ", J_cross_section_freq1.shape, J_cross_section[i][0].shape)
- print(f"J_cross_section {str(i)} freq2 shape ", J_cross_section_freq2.shape, J_cross_section[i][1].shape)
-
def compute_alpha_s(self):
# --- Compute alpha_s ---
@@ -2161,13 +1946,9 @@ class SedimentCalibrationTab(QWidget):
print(f"\u03B1s for frequency of freq1 : {alpha_s_freq1:.2f} /m \n")
print(f"\u03B1s for frequency of freq2 : {alpha_s_freq2:.2f} /m")
- # self.spinbox_alphas_freq1.clear()
- # self.spinbox_alphas_freq1.setValue(alpha_s_freq1)
self.lineEdit_alphas_freq1.clear()
self.lineEdit_alphas_freq1.setText(str("%.5f" % alpha_s_freq1))
- # self.spinbox_alphas_freq2.clear()
- # self.spinbox_alphas_freq2.setValue(alpha_s_freq2)
self.lineEdit_alphas_freq2.clear()
self.lineEdit_alphas_freq2.setText(str("%.5f" % alpha_s_freq2))
@@ -2229,13 +2010,9 @@ class SedimentCalibrationTab(QWidget):
print(f"\u03B6 for frequency of freq1 : {zeta_freq1:.3f} /m \n")
print(f"\u03B6 for frequency of freq2 : {zeta_freq2:.3f} /m")
- # self.spinbox_zeta_freq1.clear()
- # self.spinbox_zeta_freq1.setValue(zeta_freq1)
self.lineEdit_zeta_freq1.clear()
self.lineEdit_zeta_freq1.setText(str("%.5f" % zeta_freq1))
- # self.spinbox_zeta_freq2.clear()
- # self.spinbox_zeta_freq2.setValue(zeta_freq2)
self.lineEdit_zeta_freq2.clear()
self.lineEdit_zeta_freq2.setText(str("%.5f" % zeta_freq2))
@@ -2248,8 +2025,6 @@ class SedimentCalibrationTab(QWidget):
directory=[stg.path_calibration_file if stg.path_calibration_file else stg.path_BS_raw_data[-1] if self.combobox_acoustic_data_choice.count() > 0 else ""][0],
options=QFileDialog.DontUseNativeDialog)
- print("dir_save_cal ", dir_save_cal)
-
if dir_save_cal:
stg.path_calibration_file = path.dirname(dir_save_cal)
@@ -2289,12 +2064,10 @@ class SedimentCalibrationTab(QWidget):
aquascat_cell_size = []
tau = []
real_cell_size = []
- # stg.depth_real[self.combobox_acoustic_data_choice.currentIndex()] = (
- # np.zeros(stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape))
+
stg.depth_real = np.zeros(stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape)
for f in range(stg.freq[self.combobox_acoustic_data_choice.currentIndex()].shape[0]):
- print("f = ", f)
# defaut Aquascat cell size
aquascat_cell_size.append(
stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][f, 1] -
@@ -2303,27 +2076,19 @@ class SedimentCalibrationTab(QWidget):
# Pulse duration
tau.append(aquascat_cell_size[f] * 2 / 1500) # figure 2.9 1500 vitesse du son entrée pour le paramètrage des mesures aquascat
- print(stg.water_velocity)
- print(tau)
# Real cell size
real_cell_size.append(stg.water_velocity * tau[f] / 2) # voir fig 2.9
# Converting to real cell profile
- # stg.depth_real[self.combobox_acoustic_data_choice.currentIndex()][f, :] = \
- # (stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][f, :] /
- # aquascat_cell_size[f] * real_cell_size[f]) # (/ aquascat_cell_size) pour ramener BS.r entre 0 et 1
stg.depth_real[f, :] = (stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][f, :]
/ aquascat_cell_size[f] * real_cell_size[f])
- print("stg.depth_real ", stg.depth_real)
- # (* real_cell_size) pour remettre les échelles spatiales sur la taille réelle des cellules
else:
aquascat_cell_size = []
tau = []
real_cell_size = []
- # stg.depth_real[self.combobox_acoustic_data_choice.currentIndex()] = (
- # np.zeros(stg.depth[self.combobox_acoustic_data_choice.currentIndex()].shape))
+
stg.depth_real = (np.zeros(stg.depth[self.combobox_acoustic_data_choice.currentIndex()].shape))
for f in range(stg.freq[self.combobox_acoustic_data_choice.currentIndex()].shape[0]):
@@ -2340,57 +2105,23 @@ class SedimentCalibrationTab(QWidget):
real_cell_size.append(stg.water_velocity * tau[f] / 2) # voir fig 2.9
# Converting to real cell profile
- # stg.depth_real[self.combobox_acoustic_data_choice.currentIndex()][f, :] = \
- # (stg.depth[self.combobox_acoustic_data_choice.currentIndex()][f, :] /
- # aquascat_cell_size[f] * real_cell_size[f]) # (/ aquascat_cell_size) pour ramener BS.r entre 0 et 1
- # # (* real_cell_size) pour remettre les échelles spatiales sur la taille réelle des cellules
+
stg.depth_real[f, :] = (stg.depth[self.combobox_acoustic_data_choice.currentIndex()][f, :] /
aquascat_cell_size[f] * real_cell_size[f])
- print("R_real 2D ", stg.depth_real.shape)
-
if stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
- # stg.depth_real[self.combobox_acoustic_data_choice.currentIndex()] = (
- # np.repeat(stg.depth_real[self.combobox_acoustic_data_choice.currentIndex()][:, :, np.newaxis],
- # stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape[1], axis=2))
stg.depth_real = \
(np.repeat(stg.depth_real[:, :, np.newaxis],
stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape[1], axis=2))
- print("R_real 3D ", stg.depth_real.shape)
-
else:
- # stg.depth_real[self.combobox_acoustic_data_choice.currentIndex()] = (
- # np.repeat(stg.depth_real[self.combobox_acoustic_data_choice.currentIndex()][:, :, np.newaxis],
- # stg.time[self.combobox_acoustic_data_choice.currentIndex()].shape[1], axis=2))
stg.depth_real = (
np.repeat(stg.depth_real[:, :, np.newaxis],
stg.time[self.combobox_acoustic_data_choice.currentIndex()].shape[1], axis=2))
- print("R_real 3D ", stg.depth_real.shape)
-
def compute_FCB(self):
- # if stg.BS_stream_bed.size == 0:
- # msgBox = QMessageBox()
- # msgBox.setWindowTitle("FCB Error")
- # msgBox.setIcon(QMessageBox.Warning)
- # msgBox.setText("Load Backscatter data from acoustic data tab and compute water attenuation")
- # msgBox.setStandardButtons(QMessageBox.Ok)
- # msgBox.exec()
- # else:
-
- # R_real = np.repeat(self.range_cells_function()[:, :, np.newaxis], stg.t.shape[1], axis=2)
- # if (stg.BS_stream_bed_pre_process_average.size == 0) and (stg.BS_stream_bed_pre_process_SNR.size == 0):
- # stg.FCB = (np.log(stg.BS_stream_bed) + np.log(R_real) +
- # 2 * stg.water_attenuation * R_real)
- # elif stg.BS_stream_bed_pre_process_SNR.size == 0:
- # stg.FCB = (np.log(stg.BS_stream_bed_pre_process_average) + np.log(R_real) +
- # 2 * stg.water_attenuation * R_real)
- # else:
- # stg.FCB = (np.log(stg.BS_stream_bed_pre_process_SNR) + np.log(R_real) +
- # 2 * stg.water_attenuation * R_real)
self.combobox_frequency_FCB.clear()
self.combobox_frequency_FCB.addItems(stg.freq_text[self.combobox_acoustic_data_choice.currentIndex()])
@@ -2417,13 +2148,6 @@ class SedimentCalibrationTab(QWidget):
elif stg.BS_stream_bed[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
- print("zzzzzzzzzzzzzzzzzzzzz")
- print(np.log(stg.BS_stream_bed[self.combobox_acoustic_data_choice.currentIndex()]).shape)
- print(np.log(stg.depth_real).shape)
- print(stg.water_attenuation)
- print(stg.depth_real.shape)
- print("zzzzzzzzzzzzzzzzzzzzz")
-
stg.FCB = \
(np.log(stg.BS_stream_bed[self.combobox_acoustic_data_choice.currentIndex()]) +
np.log(stg.depth_real) +
@@ -2451,13 +2175,6 @@ class SedimentCalibrationTab(QWidget):
elif stg.BS_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
- print("ttttttttttttttttttttttttt")
- print(stg.BS_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape)
- print(stg.depth_real.shape)
- print(stg.water_attenuation[self.combobox_acoustic_data_choice.currentIndex()])
- print(stg.depth_real.shape)
- print("ttttttttttttttttttttttttt")
-
stg.FCB = \
(np.log(stg.BS_cross_section[self.combobox_acoustic_data_choice.currentIndex()]) +
np.log(stg.depth_real) +
@@ -2492,10 +2209,6 @@ class SedimentCalibrationTab(QWidget):
self.combobox_frequency_FCB.currentIndex()] *
stg.depth_real)
- print("FCB shape", stg.FCB.shape)
- print("FCB ", stg.FCB)
-
-
self.plot_FCB()
def plot_FCB(self):
@@ -2547,10 +2260,6 @@ class SedimentCalibrationTab(QWidget):
horizontalalignment='right', verticalalignment='bottom',
transform=self.axis_FCB.transAxes)
- # if len(stg.lin_reg) != 0:
- # self.axis_FCB_profile[self.combobox_frequency_compute_alphaS.currentIndex()]. \
- # plot(stg.r[f, :], stg.lin_reg[0]*stg.r[f, :] + stg.lin_reg[1], linestyle="dashed", linewidth=1, color="b")
-
self.fig_FCB.supxlabel("Depth (m)")
self.fig_FCB.supylabel("FCB")
self.fig_FCB.canvas.draw_idle()
@@ -2660,15 +2369,11 @@ class SedimentCalibrationTab(QWidget):
np.min(np.round(np.abs(x - float(self.lineEdit_FCB_from.text().replace(',','.'))), 2)))[0][0]
value2 = np.where(np.round(np.abs(x - float(self.lineEdit_FCB_to.text().replace(',', '.'))), 2) ==
np.min(np.round(np.abs(x - float(self.lineEdit_FCB_to.text().replace(',', '.'))), 2)))[0][0]
- print("value1 ", value1)
- print("value2 ", value2)
lin_reg_compute = linregress(x[value1:value2], y[value1:value2])
- print("lin_reg_compute ", lin_reg_compute)
stg.lin_reg.clear()
stg.lin_reg = [lin_reg_compute.slope, lin_reg_compute.intercept]
- print("stg.lin_reg ", stg.lin_reg)
# --- Plot result of linear regression ---
self.axis_FCB.plot(
@@ -2692,11 +2397,8 @@ class SedimentCalibrationTab(QWidget):
np.min(np.round(np.abs(x - float(self.lineEdit_FCB_from.text().replace(',','.'))), 2)))[0][0]
value2 = np.where(np.round(np.abs(x - float(self.lineEdit_FCB_to.text().replace(',', '.'))), 2) ==
np.min(np.round(np.abs(x - float(self.lineEdit_FCB_to.text().replace(',', '.'))), 2)))[0][0]
- print("value1 ", value1)
- print("value2 ", value2)
lin_reg_compute = linregress(x[value1:value2], y[value1:value2])
- print("lin_reg_compute ", lin_reg_compute)
stg.lin_reg.clear()
stg.lin_reg = [lin_reg_compute.slope, lin_reg_compute.intercept]
@@ -2717,69 +2419,6 @@ class SedimentCalibrationTab(QWidget):
self.label_alphaS_FCB.clear()
self.label_alphaS_FCB.setText(f"αs = {-0.5*stg.lin_reg[0]:.4f} dB/m")
- # if stg.FCB.size == 0:
- # msgBox = QMessageBox()
- # msgBox.setWindowTitle("Linear regression error")
- # msgBox.setIcon(QMessageBox.Warning)
- # msgBox.setText("Please compute FCB before")
- # msgBox.setStandardButtons(QMessageBox.Ok)
- # msgBox.exec()
- # else:
- # try:
- # y0 = stg.FCB[self.combobox_frequency_compute_alphaS.currentIndex(), :, self.slider.value()]
- # y = y0[np.where(np.isnan(y0) == False)]
- #
- # x0 = stg.r[0, :].reshape(-1)
- # x = x0[np.where(np.isnan(y0) == False)]
- #
- # value1 = np.where(np.round(np.abs(x - self.spinbox_alphaS_computation_from.value()), 2)
- # == np.min(np.round(np.abs(x - self.spinbox_alphaS_computation_from.value()), 2)))
- # value2 = np.where(np.round(np.abs(x - self.spinbox_alphaS_computation_to.value()), 2)
- # == np.min(np.round(np.abs(x - self.spinbox_alphaS_computation_to.value()), 2)))
- #
- # # print(np.round(np.abs(x - self.spinbox_alphaS_computation_from.value()), 2))
- # # # print("value1 ", value1[0][0])
- # # print(np.round(np.abs(x - self.spinbox_alphaS_computation_to.value()), 2))
- # # print("value2 ", value2[0][0])
- #
- # # print("y limited ", y[value1[0][0]:value2[0][0]])
- #
- # lin_reg_compute = stats.linregress(x[value1[0][0]:value2[0][0]], y[value1[0][0]:value2[0][0]])
- # except ValueError:
- # msgBox = QMessageBox()
- # msgBox.setWindowTitle("Linear regression error")
- # msgBox.setIcon(QMessageBox.Warning)
- # msgBox.setText("Please check boundaries to fit a linear line")
- # msgBox.setStandardButtons(QMessageBox.Ok)
- # msgBox.exec()
- # else:
- # stg.lin_reg = (lin_reg_compute.slope, lin_reg_compute.intercept)
- # # print(f"y = {stg.lin_reg[0]}x + {stg.lin_reg[1]}")
- #
- # self.label_alphaS.clear()
- # self.label_alphaS.setText(f"\u03B1s = {-0.5*stg.lin_reg[0]:.4f} dB/m")
- #
- # # for i, value_freq in enumerate(stg.freq):
- # # for k, value_t in enumerate(stg.t):
- # # # print(f"indice i: {i}, indice k: {k}")
- # # # print(f"values of FCB: {stg.FCB[:, i, k]}")
- # # y = stg.FCB[:, i, k]
- # # # print("y : ", y)
- # # # print(f"values of FCB where FCB is not Nan {y[np.where(np.isnan(y) == False)]}")
- # # # print(f"values of r where FCB is not Nan {x[np.where(np.isnan(y) == False)]}")
- # # lin_reg_compute = stats.linregress(x[np.where(np.isnan(y) == False)], y[np.where(np.isnan(y) == False)])
- # # lin_reg_tuple = (lin_reg_compute.slope, lin_reg_compute.intercept)
- # # stg.lin_reg.append(lin_reg_tuple)
- #
- # # print(f"y = {lin_reg.slope}x + {lin_reg.intercept}")
- #
- # # plt.figure()
- # # plt.plot(stg.r, stg.FCB[:, 0, 825], 'k-', stg.r, lin_reg.slope*stg.r + lin_reg.intercept, "b--")
- # # plt.show()
- #
- # # print("lin_reg length ", len(stg.lin_reg))
- # # print("lin_reg ", stg.lin_reg)
-
def slider_profile_number_to_begin_FCB(self):
self.slider_FCB.setValue(int(self.slider_FCB.minimum()))
self.update_lineEdit_by_moving_slider_FCB()