First commit of acoustic data loader python file for UBSediFlow Acoustic Backscatter System
parent
e0b76447e6
commit
4537a7d414
|
|
@ -0,0 +1,207 @@
|
|||
from Model.AquascatDataLoader import RawAquascatData
|
||||
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.colors import LogNorm
|
||||
|
||||
from udt_extract.raw_extract import raw_extract
|
||||
# raw_20210519_102332.udt raw_20210520_135452.udt raw_20210525_092759.udt
|
||||
# path_BS_raw_data = ("/home/bmoudjed/Documents/3 SSC acoustic meas project/Graphical interface project/Data/APAVER_2021/"
|
||||
# "Rhone_20210519/Rhone_20210519/record/raw_20210525_092759.udt")
|
||||
|
||||
class AcousticDataLoaderUBSediFlow():
|
||||
|
||||
def __init__(self, path_BS_raw_data: str):
|
||||
|
||||
self.path_BS_raw_data = path_BS_raw_data
|
||||
|
||||
# --- Extract Backscatter acoustic raw data with class ---
|
||||
|
||||
# Extraction function:
|
||||
|
||||
device_name, time_begin, time_end, param_us_dicts, data_us_dicts, data_dicts, settings_dict \
|
||||
= raw_extract(self.path_BS_raw_data)
|
||||
|
||||
self._freq = []
|
||||
self._r = np.array([[]])
|
||||
self._time = np.array([[]])
|
||||
self._BS_raw_data = np.array([[[]]])
|
||||
time_len = []
|
||||
for config in param_us_dicts.keys():
|
||||
# print("-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x")
|
||||
# print(f"config : {config} \n")
|
||||
for channel in param_us_dicts[config].keys():
|
||||
# print("-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x")
|
||||
# print(f"channel : {channel} \n")
|
||||
|
||||
# --- Frequencies ---
|
||||
self._freq.append(param_us_dicts[config][channel]['f0'])
|
||||
|
||||
# --- Depth for each frequencies ---
|
||||
depth = [param_us_dicts[config][channel]['r_cell1'] * i
|
||||
for i in list(range(param_us_dicts[config][channel]['n_cell']))]
|
||||
if self._r.shape[1] == 0:
|
||||
self._r = np.array([depth])
|
||||
else:
|
||||
self._r = np.append(self._r, [depth], axis=0)
|
||||
|
||||
# --- Time for each frequencies ---
|
||||
time = [[(t - data_us_dicts[config][channel]['echo_avg_profile']['time'][0]).total_seconds()
|
||||
for t in data_us_dicts[config][channel]['echo_avg_profile']['time']]]
|
||||
time_len = np.append(time_len, len(time[0]))
|
||||
|
||||
if len(time_len) == 1:
|
||||
# print(f"1 time length : {len(time[0])}")
|
||||
self._time = np.array(time)
|
||||
# print(f"self._time.shape {self._time.shape}")
|
||||
elif self._time.shape[1] == len(time[0]):
|
||||
# print(f"2 time length : {len(time[0])}")
|
||||
self._time = np.append(self._time, time, axis=0)
|
||||
# print(f"self._time.shape {self._time.shape}")
|
||||
elif self._time.shape[1] > len(time[0]):
|
||||
# print(f"3 time length : {len(time[0])}")
|
||||
# print(f"self._time.shape {self._time.shape}")
|
||||
# print([int(np.min(time_len)) + int(i) - 1 for i in range(1, int(np.max(time_len))-int(np.min(time_len))+1)])
|
||||
self._time = np.delete(self._time,
|
||||
[int(np.min(time_len)) + int(i) - 1 for i in range(1, int(np.max(time_len))-int(np.min(time_len))+1)],
|
||||
axis=1)
|
||||
self._time = np.append(self._time, time, axis=0)
|
||||
# print(f"self._time.shape {self._time.shape}")
|
||||
elif self._time.shape[1] < len(time[0]):
|
||||
# print(f"4 time length : {len(time[0])}")
|
||||
time = time[:int(np.max(time_len)) - (int(np.max(time_len)) - int(np.min(time_len)))]
|
||||
self._time = np.append(self._time, time, axis=0)
|
||||
# print(f"self._time.shape {self._time.shape}")
|
||||
|
||||
# --- US Backscatter raw signal ---
|
||||
for f, freq in enumerate(self._freq):
|
||||
if f == 0:
|
||||
# print(data_us_dicts[config][channel]['echo_avg_profile']['data'])
|
||||
self._BS_raw_data = np.array([np.reshape(data_us_dicts[config][channel]['echo_avg_profile']['data'],
|
||||
(self._time.shape[1], self._r.shape[1])).transpose()])
|
||||
# print(self._BS_raw_data.shape)
|
||||
else:
|
||||
self._BS_raw_data = np.append(self._BS_raw_data,
|
||||
np.array([np.reshape(np.array(
|
||||
data_us_dicts[config][channel]['echo_avg_profile']['data']),
|
||||
(self._time.shape[1], self._r.shape[1])).transpose()]),
|
||||
axis=0)
|
||||
# print(self._BS_raw_data.shape)
|
||||
# print(len(self._BS_raw_data))
|
||||
# print(self._BS_raw_data)
|
||||
|
||||
print("self._time.shape ", self._time.shape)
|
||||
|
||||
print("self._r.shape ", self._r.shape)
|
||||
|
||||
self._freq_text = [str(f) for f in [np.round(f*1e-6, 2) for f in self._freq]]
|
||||
print("self._freq_text ", self._freq_text)
|
||||
|
||||
# self._BS_raw_data = np.array(np.reshape(self._BS_raw_data, (len(self._freq), self._r.shape[1], self._time.shape[1])))
|
||||
print("self._BS_raw_data.shape ", self._BS_raw_data.shape)
|
||||
|
||||
# print("device_name ", device_name, "\n")
|
||||
|
||||
# print("time_begin ", time_begin, "\n")
|
||||
|
||||
# print("time_end ", time_end, "\n")
|
||||
|
||||
# print(f"param_dicts keys {param_us_dicts.keys()} \n")
|
||||
# print(param_us_dicts, "\n")
|
||||
|
||||
# for i in range(len(list(param_us_dicts.keys()))):
|
||||
# print(f"param_us_dicts {i} : {list(param_us_dicts.items())[i]} \n")
|
||||
|
||||
# # print("settings_dict ", settings_dict, "\n")
|
||||
# print(f"keys in data_us_dicts {data_us_dicts[1][1].keys()} \n")
|
||||
# # les clés du dictionnaire data_us_dicts :
|
||||
# # dict_keys(['echo_avg_profile', 'saturation_avg_profile', 'velocity_avg_profile', 'snr_doppler_avg_profile',
|
||||
# # 'velocity_std_profile', 'a1_param', 'a0_param', 'noise_g_high', 'noise_g_low'])
|
||||
|
||||
# print(f"data_us_dicts keys in echo avg profile {data_us_dicts[1][1]['echo_avg_profile'].keys()} \n")
|
||||
# print(f"number of profiles {len(data_us_dicts[1][1]['echo_avg_profile']['data'])} \n")
|
||||
# print(f"number of cells {data_us_dicts[1][1]['echo_avg_profile']['data'][0].shape} \n")
|
||||
|
||||
# self._data_BS = RawAquascatData(self.path_BS_raw_data)
|
||||
|
||||
#
|
||||
# self._date = self._data_BS.date.date()
|
||||
# self._hour = self._data_BS.date.time()
|
||||
# self._nb_profiles = self._data_BS.NumProfiles
|
||||
# self._nb_profiles_per_sec = self._data_BS.ProfileRate
|
||||
# self._nb_cells = self._data_BS.NumCells
|
||||
# self._cell_size = self._data_BS.cellSize
|
||||
# self._pulse_length = self._data_BS.TxPulseLength
|
||||
# self._nb_pings_per_sec = self._data_BS.PingRate
|
||||
# self._nb_pings_averaged_per_profile = self._data_BS.Average
|
||||
# self._kt = self._data_BS.Kt
|
||||
# self._gain_rx = self._data_BS.RxGain
|
||||
# self._gain_tx = self._data_BS.TxGain
|
||||
|
||||
# self._snr = np.array([])
|
||||
# self._snr_reshape = np.array([])
|
||||
# self._time_snr = np.array([])
|
||||
|
||||
# print(type(self._gain_tx))
|
||||
|
||||
# print(["BS - " + f for f in self._freq_text])
|
||||
# print(self._time.shape[0]*self._r.shape[0]*4)
|
||||
|
||||
# print(self._time[np.where(np.floor(self._time) == 175)])
|
||||
# print(np.where((self._time) == 155)[0][0])
|
||||
|
||||
fig, ax = plt.subplots(nrows=len(self._freq), ncols=1)
|
||||
for f, freq in enumerate(self._freq):
|
||||
# print(f"{f} : {freq} \n")
|
||||
pcm = ax[f].pcolormesh(self._time[f, :], self._r[f, :], (self._BS_raw_data[f, :, :self._time.shape[1]]),
|
||||
cmap='viridis',
|
||||
norm=LogNorm(vmin=np.min(self._BS_raw_data[f, :, :]), vmax=np.max(self._BS_raw_data[f, :, :])), shading='gouraud') # )
|
||||
# ax.pcolormesh(range(self._BS_raw_data.shape[2]), range(self._BS_raw_data.shape[0]), self._BS_raw_data[:, 1, :], cmap='viridis',
|
||||
# norm=LogNorm(vmin=1e-5, vmax=np.max(self._BS_raw_data[:, 0, :]))) # , shading='gouraud')
|
||||
fig.colorbar(pcm, ax=ax[:], shrink=1, location='right')
|
||||
plt.show()
|
||||
|
||||
# fig, ax = plt.subplots(nrows=1, ncols=1)
|
||||
# ax.plot(list(range(self._time.shape[1])), self._time[0, :])
|
||||
# # ax.set_ylim(2, 20)
|
||||
# plt.show()
|
||||
|
||||
# print(self.reshape_BS_raw_cross_section()[0, 0])
|
||||
# self.reshape_r()
|
||||
# self.reshape_t()
|
||||
|
||||
# def reshape_BS_raw_cross_section(self):
|
||||
# BS_raw_cross_section = np.reshape(self._BS_raw_data,
|
||||
# (self._r.shape[0]*len(self._time), self._freq.shape[0]),
|
||||
# order="F")
|
||||
# return BS_raw_cross_section
|
||||
#
|
||||
# def reshape_r(self):
|
||||
# r = np.reshape(np.repeat(self._r, self._time.shape[0], axis=1),
|
||||
# self._r.shape[0]*self._time.shape[0],
|
||||
# order="F")
|
||||
# return r
|
||||
#
|
||||
# def compute_r_2D(self):
|
||||
# r2D = np.repeat(self._r, self._time.size, axis=1)
|
||||
# return r2D
|
||||
#
|
||||
# def reshape_t(self):
|
||||
# t = np.reshape(np.repeat(self._time, self._r.shape[0]), (self._time.shape[0]*self._r.shape[0], 1))
|
||||
# return t
|
||||
|
||||
# def concatenate_data(self):
|
||||
# self.reshape_t()
|
||||
# self.reshape_BS_raw_cross_section()
|
||||
# # print(self.reshape_t().shape)
|
||||
# # print(se.lf.reshape_BS_raw_cross_section().shape)
|
||||
# df = pd.DataFrame(np.concatenate((self.reshape_t(), self.reshape_BS_raw_cross_section()), axis=1),
|
||||
# columns=["time"] + self._freq_text)
|
||||
# return df
|
||||
|
||||
|
||||
# if __name__ == "__main__":
|
||||
# AcousticDataLoaderUBSediFlow(path_BS_raw_data)
|
||||
|
||||
|
||||
Loading…
Reference in New Issue