File setting is created to store global variables used all along tabs. Acoustic data tab is re-write with global variables.

dev-brahim
brahim 2023-08-08 15:40:35 +02:00
parent 2905226f2a
commit 58138d0e4e
3 changed files with 405 additions and 226 deletions

View File

@ -5,10 +5,10 @@ import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
path_BS_raw_data = "/home/bmoudjed/Documents/3 SSC acoustic meas project/Graphical interface project/" \
"Data/Acoustic_data/20180107123500.aqa"
path_noise_data = "/home/bmoudjed/Documents/3 SSC acoustic meas project/Graphical interface project/" \
"Data/AcousticNoise_data/20180107121600.aqa"
# path_BS_raw_data = "/home/bmoudjed/Documents/3 SSC acoustic meas project/Graphical interface project/" \
# "Data/Acoustic_data/20180107123500.aqa"
# path_noise_data = "/home/bmoudjed/Documents/3 SSC acoustic meas project/Graphical interface project/" \
# "Data/AcousticNoise_data/20180107121600.aqa"
class AcousticDataLoader():
@ -39,29 +39,32 @@ class AcousticDataLoader():
self._gain_rx = self._data_BS.RxGain
self._gain_tx = self._data_BS.TxGain
self._snr = np.array([])
self._snr_reshape = np.array([])
self._time_snr = np.array([])
# self._snr = np.array([])
# self._snr_reshape = np.array([])
# self._time_snr = np.array([])
# print(type(self._gain_tx))
# print(["BS - " + f for f in self._freq_text])
# print(self._time.shape[0]*self._r.shape[0]*4)
# fig, ax = plt.subplots(nrows=1, ncols=1)
# ax.pcolormesh(self._time, self._r, np.flipud(self._BS_raw_data[:, 1, :]),
# ax.pcolormesh(self._time, self._r, (self._BS_raw_data[:, 1, :]),
# cmap='viridis',
# norm=LogNorm(vmin=1e-5, vmax=np.max(self._BS_raw_data[:, 0, :]))) # , shading='gouraud')
# ax.pcolormesh(range(self._BS_raw_data.shape[2]), range(self._BS_raw_data.shape[0]), self._BS_raw_data[:, 1, :], cmap='viridis',
# norm=LogNorm(vmin=1e-5, vmax=np.max(self._BS_raw_data[:, 0, :]))) # , shading='gouraud')
# # ax.pcolormesh(range(self._BS_raw_data.shape[2]), range(self._BS_raw_data.shape[0]), self._BS_raw_data[:, 1, :], cmap='viridis',
# # norm=LogNorm(vmin=1e-5, vmax=np.max(self._BS_raw_data[:, 0, :]))) # , shading='gouraud')
# plt.show()
# fig, ax = plt.subplots(nrows=1, ncols=1)
# ax.plot(self._BS_raw_data[:, 0, 100] , self._r)
# ax.set_ylim(2, 20)
# plt.show()
# print(self.reshape_BS_raw_cross_section()[0, 0])
# self.reshape_r()
# self.reshape_t()
# dataframe = self.concatenate_data()
# print(dataframe)
def reshape_BS_raw_cross_section(self):
BS_raw_cross_section = np.reshape(self._BS_raw_data,
(self._r.shape[0]*len(self._time), self._freq.shape[0]),
@ -78,14 +81,14 @@ class AcousticDataLoader():
t = np.reshape(np.repeat(self._time, self._r.shape[0]), (self._time.shape[0]*self._r.shape[0], 1))
return t
def concatenate_data(self):
self.reshape_t()
self.reshape_BS_raw_cross_section()
# print(self.reshape_t().shape)
# print(se.lf.reshape_BS_raw_cross_section().shape)
df = pd.DataFrame(np.concatenate((self.reshape_t(), self.reshape_BS_raw_cross_section()), axis=1),
columns=["time"] + self._freq_text)
return df
# def concatenate_data(self):
# self.reshape_t()
# self.reshape_BS_raw_cross_section()
# # print(self.reshape_t().shape)
# # print(se.lf.reshape_BS_raw_cross_section().shape)
# df = pd.DataFrame(np.concatenate((self.reshape_t(), self.reshape_BS_raw_cross_section()), axis=1),
# columns=["time"] + self._freq_text)
# return df
# if __name__ == "__main__":

View File

@ -1,8 +1,9 @@
import sys
from PyQt5.QtWidgets import QWidget, QVBoxLayout, QHBoxLayout, QGroupBox, QPushButton, QComboBox, QLineEdit, QLabel, \
from PyQt5.QtWidgets import (QWidget, QVBoxLayout, QHBoxLayout, QGroupBox, QPushButton, QComboBox, QLineEdit, QLabel, \
QGridLayout, QSpinBox, QDoubleSpinBox, QTableView, QTableWidget, QSpacerItem, QSizePolicy, \
QAbstractScrollArea, QFileDialog, QTableWidgetItem, QMessageBox, QScrollBar, QScrollArea
QAbstractScrollArea, QFileDialog, QTableWidgetItem, QMessageBox, QScrollBar, QScrollArea,
QProgressBar)
from PyQt5.QtGui import QPixmap, QIcon
from PyQt5.QtCore import Qt, QCoreApplication, pyqtSignal, pyqtSlot, QEvent
@ -31,6 +32,8 @@ from View.window_noise_level_averaged_profile import WindowNoiseLevelTailAverage
from View.sample_data_tab import SampleDataTab
import settings as stg
_translate = QCoreApplication.translate
@ -336,7 +339,7 @@ class AcousticDataTab(QWidget):
self.spinbox_tmin.setRange(0, 9999)
self.gridLayout_groupbox_xaxis_time.addWidget(self.spinbox_tmin, 0, 2, 1, 1)
self.spinbox_tmin.valueChanged.connect(self.update_xaxis_transect_with_BS_raw_data)
self.spinbox_tmin.valueChanged.connect(self.update_xaxis_transect_with_SNR_data)
# self.spinbox_tmin.valueChanged.connect(self.plot_transect_with_BS_raw_data)
self.label_tmin_unit = QLabel()
self.label_tmin_unit.setText("sec")
@ -354,7 +357,7 @@ class AcousticDataTab(QWidget):
self.spinbox_tmax.setRange(0, 9999)
self.gridLayout_groupbox_xaxis_time.addWidget(self.spinbox_tmax, 0, 6, 1, 1)
self.spinbox_tmax.valueChanged.connect(self.update_xaxis_transect_with_BS_raw_data)
self.spinbox_tmax.valueChanged.connect(self.update_xaxis_transect_with_SNR_data)
# self.spinbox_tmax.valueChanged.connect(self.update_xaxis_transect_with_SNR_data)
self.label_tmax_unit = QLabel()
self.label_tmax_unit.setText("sec")
@ -405,7 +408,7 @@ class AcousticDataTab(QWidget):
self.gridlayout_compute_bathymetry = QGridLayout(self.groupbox_compute_bathymetry)
self.combobox_freq_choice = QComboBox()
self.combobox_freq_choice.addItems(['', '0.3 MHz', '0.5 Mhz', '1 MHz', '5 MHz'])
# self.combobox_freq_choice.addItems(['', '0.3 MHz', '0.5 Mhz', '1 MHz', '5 MHz'])
self.gridlayout_compute_bathymetry.addWidget(self.combobox_freq_choice, 0, 0, 2, 1)
self.gridlayout_compute_bathymetry.addWidget(self.label_from, 0, 1, 1, 1)
self.spinbox_depth_min = QSpinBox()
@ -631,6 +634,7 @@ class AcousticDataTab(QWidget):
self.WindowNoiseLevelTailAveragedProfile().show()
def open_dialog_box(self):
# --- Open dialog box + choice directory and select file ---
if self.combobox_ABS_system_choice.currentIndex() == 0:
msgBox = QMessageBox()
msgBox.setWindowTitle("Download Error")
@ -648,100 +652,109 @@ class AcousticDataTab(QWidget):
filename = QFileDialog.getOpenFileName(self, "Open file", "", "UBSediFlow file (*.udt)")
dir_name = path.dirname(filename[0])
name = path.basename(filename[0])
# --- Fill lineEdit with path and file names + load acoustic data ---
# --- fill date, hour and measurements information + fill frequency combobox for bottom detection ---
if self.combobox_ABS_system_choice.currentIndex() != 0:
if self.sender().objectName() == "pushbutton_acoustic_file":
self.lineEdit_acoustic_file.setText(name)
self.lineEdit_acoustic_file.setToolTip(dir_name)
acoustic_data = self.load_BS_acoustic_raw_data()
stg.path_BS_raw_data = dir_name
stg.filename_BS_raw_data = name
self.load_BS_acoustic_raw_data()
self.lineEdit_acoustic_file.setText(stg.filename_BS_raw_data)
self.lineEdit_acoustic_file.setToolTip(stg.path_BS_raw_data)
self.label_date_groupbox_acoustic_file.setText(
_translate("CONSTANT_STRING", cs.DATE) + ": " + str(acoustic_data._date))
_translate("CONSTANT_STRING", cs.DATE) + ": " + str(stg.date))
self.label_hour_groupbox_acoustic_file.setText(
_translate("CONSTANT_STRING", cs.HOUR) + ": " + str(acoustic_data._hour))
_translate("CONSTANT_STRING", cs.HOUR) + ": " + str(stg.hour))
self.fill_measurements_information_groupbox()
self.combobox_freq_choice.addItems([f for f in stg.freq_text])
if self.sender().objectName() == "pushbutton_noise_file":
self.lineEdit_noise_file.setText(name)
self.lineEdit_noise_file.setToolTip(dir_name)
noise_data = self.load_noise_data()
stg.path_BS_noise_data = dir_name
stg.filename_BS_noise_data = name
self.load_noise_data_and_compute_SNR()
self.lineEdit_noise_file.setText(stg.filename_BS_noise_data)
self.lineEdit_noise_file.setToolTip(stg.path_BS_noise_data)
self.label_date_groupbox_noise_file.setText(
_translate("CONSTANT_STRING", cs.DATE) + ": " + str(noise_data._date))
_translate("CONSTANT_STRING", cs.DATE) + ": " + str(stg.date_noise))
self.label_hour_groupbox_noise_file.setText(
_translate("CONSTANT_STRING", cs.HOUR) + ": " + str(noise_data._hour))
# return filename[0]
_translate("CONSTANT_STRING", cs.HOUR) + ": " + str(stg.hour_noise))
def load_BS_acoustic_raw_data(self):
acoustic_data = \
AcousticDataLoader(self.lineEdit_acoustic_file.toolTip() + "/" + self.lineEdit_acoustic_file.text())
return acoustic_data
acoustic_data = AcousticDataLoader(stg.path_BS_raw_data + "/" + stg.filename_BS_raw_data)
stg.BS_raw_data = acoustic_data._BS_raw_data
stg.BS_raw_data_reshape = acoustic_data.reshape_BS_raw_cross_section()
stg.r = acoustic_data._r
stg.r_reshape = acoustic_data.reshape_r()
stg.time = acoustic_data._time
stg.time_reshape = acoustic_data.reshape_t()
stg.freq = acoustic_data._freq
stg.freq_text = acoustic_data._freq_text
stg.date = acoustic_data._date
stg.hour = acoustic_data._hour
stg.nb_profiles = acoustic_data._nb_profiles
stg.nb_profiles_per_sec = acoustic_data._nb_profiles_per_sec
stg.nb_cells = acoustic_data._nb_cells
stg.cell_size = acoustic_data._cell_size
stg.pulse_length = acoustic_data._cell_size
stg.nb_pings_per_sec = acoustic_data._nb_pings_per_sec
stg.nb_pings_averaged_per_profile = acoustic_data._nb_pings_averaged_per_profile
stg.kt = acoustic_data._kt
stg.gain_rx = acoustic_data._gain_rx
stg.gain_tx = acoustic_data._gain_tx
def load_noise_data(self):
noise_data = AcousticDataLoader(self.lineEdit_noise_file.toolTip() + "/" + self.lineEdit_noise_file.text())
return noise_data
def compute_SNR(self):
acoustic_data = self.load_BS_acoustic_raw_data()
noise_data = self.load_noise_data()
noise = np.zeros(acoustic_data._BS_raw_data.shape)
def load_noise_data_and_compute_SNR(self):
noise_data = AcousticDataLoader(stg.path_BS_noise_data + "/" + stg.filename_BS_noise_data)
stg.BS_noise_data = noise_data._BS_raw_data
stg.date_noise = noise_data._date
stg.hour_noise = noise_data._hour
stg.time_snr = noise_data._time
noise = np.zeros(stg.BS_raw_data.shape)
for f in range(noise_data._freq.shape[0]):
# print(np.mean(self.V_noise[:, f, :], axis=(0, 1)))
# BS_noise_section[0:BS_noise_section.shape[0], f, 0:BS_noise_section.shape[2]] = \
noise[:, f, :] = np.mean(noise_data._BS_raw_data[:, f, :], axis=(0, 1))
noise_data._time_snr = acoustic_data._time
noise_data._snr = np.divide((acoustic_data._BS_raw_data - noise)**2, noise**2)
noise_data._snr_reshape = np.reshape(noise_data._snr,
(acoustic_data._r.shape[0] * acoustic_data._time.shape[0],
noise_data._freq.shape[0]),
order="F")
return noise_data
noise[:, f, :] = np.mean(stg.BS_noise_data[:, f, :], axis=(0, 1))
stg.snr = np.divide((stg.BS_raw_data - noise) ** 2, noise ** 2)
stg.snr_reshape = np.reshape(stg.snr, (stg.r.shape[0] * stg.time.shape[0], stg.freq.shape[0]), order="F")
def fill_measurements_information_groupbox(self):
acoustic_data = self.load_BS_acoustic_raw_data()
# acoustic_data = self.load_BS_acoustic_raw_data()
self.label_profiles.setText(
_translate("CONSTANT_STRING", cs.NB_PROFILES) + ": " + str(acoustic_data._nb_profiles))
_translate("CONSTANT_STRING", cs.NB_PROFILES) + ": " + str(stg.nb_profiles))
self.label_profiles_per_sec.setText(
_translate("CONSTANT_STRING", cs.NB_PROFILES_PER_SEC) + ": " +
str(acoustic_data._nb_profiles_per_sec) + " Hz")
str(stg.nb_profiles_per_sec) + " Hz")
self.label_freq.setText(
_translate("CONSTANT_STRING", cs.FREQUENCY) + ": " + ', '.join(acoustic_data._freq_text))
_translate("CONSTANT_STRING", cs.FREQUENCY) + ": " + ', '.join(stg.freq_text))
self.label_cells.setText(
_translate("CONSTANT_STRING", cs.NB_CELLS) + ": " + str(acoustic_data._nb_cells))
_translate("CONSTANT_STRING", cs.NB_CELLS) + ": " + str(stg.nb_cells))
self.label_cell_size.setText(
_translate("CONSTANT_STRING", cs.CELL_SIZE) + ": " + str(100*round(acoustic_data._cell_size, 3)) + " cm")
_translate("CONSTANT_STRING", cs.CELL_SIZE) + ": " + str(100*round(stg.cell_size, 3)) + " cm")
self.label_pulse_length.setText(
_translate("CONSTANT_STRING", cs.PULSE_LENGHT) + ": " + str(round(acoustic_data._pulse_length,6)) + "sec")
_translate("CONSTANT_STRING", cs.PULSE_LENGHT) + ": " + str(round(stg.pulse_length,6)) + "sec")
self.label_pings_per_sec.setText(
_translate("CONSTANT_STRING", cs.NB_PINGS_PER_SEC) + ": " + str(acoustic_data._nb_pings_per_sec) + " Hz")
_translate("CONSTANT_STRING", cs.NB_PINGS_PER_SEC) + ": " + str(stg.nb_pings_per_sec) + " Hz")
self.label_pings_per_profile.setText(
_translate("CONSTANT_STRING", cs.NB_PINGS_PER_PROFILE) + ": " +
str(acoustic_data._nb_pings_averaged_per_profile))
str(stg.nb_pings_averaged_per_profile))
self.label_kt.setText(
_translate("CONSTANT_STRING", cs.KT) + ": " + ', '.join(map(str, acoustic_data._kt)))
_translate("CONSTANT_STRING", cs.KT) + ": " + ', '.join(map(str, stg.kt)))
self.label_rx.setText(
_translate("CONSTANT_STRING", cs.GAIN_RX) + ": " + ', '.join(map(str, acoustic_data._gain_rx)))
_translate("CONSTANT_STRING", cs.GAIN_RX) + ": " + ', '.join(map(str, stg.gain_rx)))
self.label_tx.setText(
_translate("CONSTANT_STRING", cs.GAIN_TX) + ": " + ', '.join(map(str, acoustic_data._gain_tx)))
_translate("CONSTANT_STRING", cs.GAIN_TX) + ": " + ', '.join(map(str, stg.gain_tx)))
def fill_table(self):
if ((self.lineEdit_acoustic_file.text()) and (self.lineEdit_noise_file.text())):
# --- Load data ---
acoustic_data = self.load_BS_acoustic_raw_data()
noise_data = self.compute_SNR()
# --- Fill table with data ---
data = pd.DataFrame(
np.concatenate((acoustic_data.reshape_t(), acoustic_data.reshape_BS_raw_cross_section(),
noise_data._snr_reshape), axis=1),
columns=list(map(str, ["Time"] + ["BS - " + f for f in acoustic_data._freq_text] +
["SNR - " + f for f in acoustic_data._freq_text])))
self.tableModel = TableModel(data)
stg.DataFrame_acoustic = pd.DataFrame(
np.concatenate((stg.time_reshape, stg.BS_raw_data_reshape, stg.snr_reshape), axis=1),
columns=list(map(str, ["Time"] + ["BS - " + f for f in stg.freq_text] +
["SNR - " + f for f in stg.freq_text])))
self.tableModel = TableModel(stg.DataFrame_acoustic)
self.tableView.setModel(self.tableModel)
elif self.lineEdit_acoustic_file.text():
# --- Load data ---
acoustic_data = self.load_BS_acoustic_raw_data()
# --- Fill table with data ---
data = pd.DataFrame(
np.concatenate((acoustic_data.reshape_t(), acoustic_data.reshape_BS_raw_cross_section()), axis=1),
columns=list(map(str, ["Time"] + ["BS - " + f for f in acoustic_data._freq_text])))
self.tableModel = TableModel(data)
stg.DataFrame_acoustic = pd.DataFrame(
np.concatenate((stg.time_reshape, stg.BS_raw_data_reshape), axis=1),
columns=list(map(str, ["Time"] + ["BS - " + f for f in stg.freq_text])))
self.tableModel = TableModel(stg.DataFrame_acoustic)
self.tableView.setModel(self.tableModel)
else:
msgBox = QMessageBox()
@ -773,16 +786,21 @@ class AcousticDataTab(QWidget):
# self.groupbox_xaxis_space.setDisabled(True)
def plot_transect_with_BS_raw_data(self):
if self.tableModel.rowCount(1) > 11:
acoustic_data = self.load_BS_acoustic_raw_data()
# print(np.max(acoustic_data._time))
# --- Condition if table is not filled ---
# print("tmin value ", self.spinbox_tmin.value())
# print("tmin index ", np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmin.value())[0][0])
if self.tableModel.rowCount(1) == 10:
msgBox = QMessageBox()
msgBox.setWindowTitle("Plot transect Error")
msgBox.setIcon(QMessageBox.Warning)
msgBox.setText("Fill table before plot transect 2D field")
msgBox.setStandardButtons(QMessageBox.Ok)
msgBox.exec()
# print("tmax value ", self.spinbox_tmax.value())
# print("tmax index ", np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmax.value())[0][0])
self.fig_BS, self.axis_BS = plt.subplots(nrows=acoustic_data._freq.shape[0], ncols=1, sharex=True, sharey=False, layout="constrained")
# --- Condition if table is filled and figure is not plotted ---
# --- => Then plot transect for each frequency by pressing the button "Plot transect"
elif (self.tableModel.rowCount(1) > 10) and (self.canvas_BS == None):
self.fig_BS, self.axis_BS = plt.subplots(nrows=stg.freq.shape[0], ncols=1, sharex=True, sharey=False, layout="constrained")
self.canvas_BS = FigureCanvas(self.fig_BS)
# self.verticalLayout_groupbox_transect_2Dplot_raw_BS_data.addWidget(self.canvas_BS)
@ -794,57 +812,76 @@ class AcousticDataTab(QWidget):
self.scroll_BS.setAlignment(Qt.AlignCenter)
self.verticalLayout_groupbox_transect_2Dplot_raw_BS_data.addWidget(self.scroll_BS)
self.spinbox_tmin.setValue(np.min(acoustic_data._time))
self.spinbox_tmax.setValue(np.round(np.max(acoustic_data._time), 2))
self.spinbox_tmin.setValue(np.min(stg.time))
self.spinbox_tmax.setValue(np.round(np.max(stg.time), 2))
for f in range(acoustic_data._freq.shape[0]):
# self.ax = self.fig.add_subplot((4, 1, f+1), sharex=True, sharey=False)
# val_min = np.min(self.model.V[:, f, :2300])
val_min = np.min(acoustic_data._BS_raw_data[:, f, :])
# val_max = np.max(self.model.V[:, f, :2300])
val_max = np.max(acoustic_data._BS_raw_data[:, f, :])
for f in range(stg.freq.shape[0]):
val_min = np.nanmin(stg.BS_raw_data[:, f, :])
val_max = np.nanmax(stg.BS_raw_data[:, f, :])
if val_min == 0:
val_min = 1e-5
# if val_min == 0:
# val_min = 1e-5
# self.ax[f].imshow(np.asarray(np.array(self.model.BS_raw_cross_section.V[:, f, :], dtype=float)), aspect='auto',
# extent=[0, 1912, self.model.depth[-1][0], self.model.depth[0][0]],
# cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max))
# self.ax[f].plot(self.model.r_bottom_cross_section, color='red', linewidth=2)
pcm = self.axis_BS[f].pcolormesh(
acoustic_data._time[np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmin.value())[0][0]:
np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmax.value())[0][0]],
acoustic_data._r ,
np.flipud(acoustic_data._BS_raw_data[:, f,
np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmin.value())[0][0]:
np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmax.value())[0][0]]),
cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max))#, shading='gouraud')
# self.axis_BS[f].plot(self._model.dist_BS_section,
# np.max(self._model.r_bottom_cross_section) - self._model.r_bottom_cross_section + np.min(self._model.r_bottom_cross_section),
# color='red', linewidth=2)
# x, y = np.meshgrid(self.model.dist_BS_section, self.model.BS_raw_cross_section.r)
# z = np.cos(x) + np.sin(y)
# self.ax[f].contour(x, y, z, levels = 0, colors='k')
# self.ax[f].plot([25, 200], [5, 5], '-k')
self.axis_BS[f].text(1, .70, acoustic_data._freq_text[f],
fontsize=14, fontweight='bold', fontname="Ubuntu", c="black", alpha=0.5,
horizontalalignment='right', verticalalignment='bottom', transform=self.axis_BS[f].transAxes)
stg.time[np.where(np.round(stg.time, 2) == self.spinbox_tmin.value())[0][0]:
np.where(np.round(stg.time, 2) == self.spinbox_tmax.value())[0][0]],
-stg.r,
stg.BS_raw_data[:, f,
np.where(np.round(stg.time, 2) == self.spinbox_tmin.value())[0][0]:
np.where(np.round(stg.time, 2) == self.spinbox_tmax.value())[0][0]],
cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max))
self.axis_BS[f].text(1, .70, stg.freq_text[f],
fontsize=14, fontweight='bold', fontname="Ubuntu", c="black", alpha=0.5,
horizontalalignment='right', verticalalignment='bottom',
transform=self.axis_BS[f].transAxes)
self.fig_BS.supxlabel('Distance from left bank (m)', fontsize=10)
self.fig_BS.supylabel('Depth (m)', fontsize=10)
# plt.subplots_adjust(bottom=0.125, top=0.98, right=1.03, left=0.08, hspace=0.1)
# self.fig.tight_layout()
cbar = self.fig_BS.colorbar(pcm, ax=self.axis_BS[:], shrink=1, location='right')
cbar.set_label(label='Backscatter acoustic signal (V)', rotation=270, labelpad=10)
self.fig_BS.canvas.draw_idle()
else:
def update_xaxis_transect_with_BS_raw_data(self):
# --- Condition if table is filled but transect is not plotted
# --- => Error message if spin box values of tmin or tmax is change
if self.canvas_BS == None:
msgBox = QMessageBox()
msgBox.setWindowTitle("Plot transect Error")
msgBox.setIcon(QMessageBox.Warning)
msgBox.setText("Fill table before plot transect 2D field")
msgBox.setText("Plot transect before change x-axis value")
msgBox.setStandardButtons(QMessageBox.Ok)
msgBox.exec()
else:
for f in range(stg.freq.shape[0]):
self.axis_BS[f].cla()
val_min = np.min(stg.BS_raw_data[:, f, :])
val_max = np.max(stg.BS_raw_data[:, f, :])
if val_min == 0:
val_min = 1e-5
pcm = self.axis_BS[f].pcolormesh(
stg.time[np.where(np.round(stg.time, 2) == self.spinbox_tmin.value())[0][0]:
np.where(np.round(stg.time, 2) == self.spinbox_tmax.value())[0][0]],
-stg.r,
(stg.BS_raw_data[:, f,
np.where(np.round(stg.time, 2) == self.spinbox_tmin.value())[0][0]:
np.where(np.round(stg.time, 2) == self.spinbox_tmax.value())[0][0]]),
cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max))
self.axis_BS[f].text(1, .70, stg.freq_text[f],
fontsize=14, fontweight='bold', fontname="Ubuntu", c="black", alpha=0.5,
horizontalalignment='right', verticalalignment='bottom',
transform=self.axis_BS[f].transAxes)
self.fig_BS.supxlabel('Distance from left bank (m)', fontsize=10)
self.fig_BS.supylabel('Depth (m)', fontsize=10)
self.fig_BS.canvas.draw_idle()
def plot_transect_with_SNR_data(self):
if self.tableModel.rowCount(1) == 10:
msgBox = QMessageBox()
@ -895,10 +932,10 @@ class AcousticDataTab(QWidget):
bounds = [00.1, 1, 2, 10, 100, 1000, val_max, val_max * 1.2]
norm = BoundaryNorm(boundaries=bounds, ncolors=300)
cf = self.axis_SNR[f].contourf(x, y,
np.flipud(noise_data._snr[:, f,
cf = self.axis_SNR[f].contourf(x, -y,
noise_data._snr[:, f,
np.where(np.round(noise_data._time_snr, 2) == self.spinbox_tmin.value())[0][0]:
np.where(np.round(noise_data._time_snr, 2) == self.spinbox_tmax.value())[0][0]]),
np.where(np.round(noise_data._time_snr, 2) == self.spinbox_tmax.value())[0][0]],
levels, cmap='gist_rainbow', norm=norm)#, shading='gouraud')
self.axis_SNR[f].text(1, .70, noise_data._freq_text[f],
@ -914,93 +951,51 @@ class AcousticDataTab(QWidget):
cbar.set_ticklabels(['0', '1', '2', '10', '100', r'10$^3$', r'10$^6$'])
self.fig_SNR.canvas.draw_idle()
def update_xaxis_transect_with_BS_raw_data(self):
if self.canvas_BS == None:
msgBox = QMessageBox()
msgBox.setWindowTitle("Plot transect Error")
msgBox.setIcon(QMessageBox.Warning)
msgBox.setText("Plot transect before change x-axis value")
msgBox.setStandardButtons(QMessageBox.Ok)
msgBox.exec()
else:
# print(self.axis_BS.cla())
# self.fig_BS.clf()
acoustic_data = self.load_BS_acoustic_raw_data()
# self.fig_BS, self.axis_BS = plt.subplots(nrows=acoustic_data._freq.shape[0], ncols=1, sharex=True,
# sharey=False, layout="constrained")
# self.canvas_BS = FigureCanvas(self.fig_BS)
# self.verticalLayout_groupbox_transect_2Dplot_raw_BS_data.addWidget(self.canvas_BS)
for f in range(acoustic_data._freq.shape[0]):
self.axis_BS[f].cla()
val_min = np.min(acoustic_data._BS_raw_data[:, f, :])
val_max = np.max(acoustic_data._BS_raw_data[:, f, :])
if val_min == 0:
val_min = 1e-5
pcm = self.axis_BS[f].pcolormesh(
acoustic_data._time[np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmin.value())[0][0]:
np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmax.value())[0][0]],
acoustic_data._r ,
np.flipud(acoustic_data._BS_raw_data[:, f,
np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmin.value())[0][0]:
np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmax.value())[0][0]]),
cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max))#, shading='gouraud')
self.axis_BS[f].text(1, .70, acoustic_data._freq_text[f],
fontsize=14, fontweight='bold', fontname="Ubuntu", c="black", alpha=0.5,
horizontalalignment='right', verticalalignment='bottom', transform=self.axis_BS[f].transAxes)
self.fig_BS.supxlabel('Distance from left bank (m)', fontsize=10)
self.fig_BS.supylabel('Depth (m)', fontsize=10)
# cbar = self.fig_BS.colorbar(pcm, ax=self.axis_BS[:], shrink=1, location='right')
# cbar.set_label(label='Backscatter acoustic signal (V)', rotation=270, labelpad=10)
self.fig_BS.canvas.draw_idle()
def update_xaxis_transect_with_SNR_data(self):
noise_data = self.compute_SNR()
if ((self.canvas_BS != None) and (self.canvas_SNR != None)):
if self.lineEdit_noise_file.text():
noise_data = self.compute_SNR()
if ((self.canvas_BS != None) and (self.canvas_SNR != None)):
x, y = np.meshgrid(
noise_data._time_snr[np.where(np.round(noise_data._time_snr, 2) == self.spinbox_tmin.value())[0][0]:
np.where(np.round(noise_data._time_snr, 2) == self.spinbox_tmax.value())[0][0]],
noise_data._r)
x, y = np.meshgrid(
noise_data._time_snr[np.where(np.round(noise_data._time_snr, 2) == self.spinbox_tmin.value())[0][0]:
np.where(np.round(noise_data._time_snr, 2) == self.spinbox_tmax.value())[0][0]],
noise_data._r)
for f in range(noise_data._freq.shape[0]):
self.axis_SNR[f].cla()
for f in range(noise_data._freq.shape[0]):
self.axis_SNR[f].cla()
val_min = np.min(noise_data._snr[:, f, :])
val_max = np.max(noise_data._snr[:, f, :])
if val_min == 0:
val_min = 1e-5
if val_max > 1000:
levels = np.array([00.1, 1, 2, 10, 100, 1000, 1e6])
else:
levels = np.array([00.1, 1, 2, 10, 100, val_max])
bounds = [00.1, 1, 2, 10, 100, 1000, val_max, val_max * 1.2]
norm = BoundaryNorm(boundaries=bounds, ncolors=300)
val_min = np.min(noise_data._snr[:, f, :])
val_max = np.max(noise_data._snr[:, f, :])
if val_min == 0:
val_min = 1e-5
if val_max > 1000:
levels = np.array([00.1, 1, 2, 10, 100, 1000, 1e6])
else:
levels = np.array([00.1, 1, 2, 10, 100, val_max])
bounds = [00.1, 1, 2, 10, 100, 1000, val_max, val_max * 1.2]
norm = BoundaryNorm(boundaries=bounds, ncolors=300)
cf = self.axis_SNR[f].contourf(x, y,
np.flipud(noise_data._snr[:, f,
np.where(np.round(noise_data._time_snr,
2) == self.spinbox_tmin.value())[0][0]:
np.where(np.round(noise_data._time_snr,
2) == self.spinbox_tmax.value())[0][0]]),
levels, cmap='gist_rainbow', norm=norm) # , shading='gouraud')
cf = self.axis_SNR[f].contourf(x, -y,
noise_data._snr[:, f,
np.where(np.round(noise_data._time_snr,
2) == self.spinbox_tmin.value())[0][0]:
np.where(np.round(noise_data._time_snr,
2) == self.spinbox_tmax.value())[0][0]],
levels, cmap='gist_rainbow', norm=norm) # , shading='gouraud')
self.axis_SNR[f].text(1, .70, noise_data._freq_text[f],
fontsize=14, fontweight='bold', fontname="Ubuntu", c="black", alpha=0.5,
horizontalalignment='right', verticalalignment='bottom',
transform=self.axis_SNR[f].transAxes)
self.axis_SNR[f].text(1, .70, noise_data._freq_text[f],
fontsize=14, fontweight='bold', fontname="Ubuntu", c="black", alpha=0.5,
horizontalalignment='right', verticalalignment='bottom',
transform=self.axis_SNR[f].transAxes)
self.fig_SNR.supxlabel('Distance from left bank (m)', fontsize=10)
self.fig_SNR.supylabel('Depth (m)', fontsize=10)
# plt.subplots_adjust(bottom=0.125, top=0.98, right=1.03, left=0.08, hspace=0.1)
# self.fig.tight_layout()
# cbar = self.fig_SNR.colorbar(cf, ax=self.axis_SNR[:], shrink=1, location='right')
# cbar.set_label(label='Signal to Noise Ratio', rotation=270, labelpad=10)
# cbar.set_ticklabels(['0', '1', '2', '10', '100', r'10$^3$', r'10$^6$'])
self.fig_SNR.canvas.draw_idle()
self.fig_SNR.supxlabel('Distance from left bank (m)', fontsize=10)
self.fig_SNR.supylabel('Depth (m)', fontsize=10)
# plt.subplots_adjust(bottom=0.125, top=0.98, right=1.03, left=0.08, hspace=0.1)
# self.fig.tight_layout()
# cbar = self.fig_SNR.colorbar(cf, ax=self.axis_SNR[:], shrink=1, location='right')
# cbar.set_label(label='Signal to Noise Ratio', rotation=270, labelpad=10)
# cbar.set_ticklabels(['0', '1', '2', '10', '100', r'10$^3$', r'10$^6$'])
self.fig_SNR.canvas.draw_idle()
def detect_bottom(self):
if self.lineEdit_acoustic_file.text() == "":
@ -1024,6 +1019,14 @@ class AcousticDataTab(QWidget):
msgBox.setText("Plot transect before compute bathymety algorithm")
msgBox.setStandardButtons(QMessageBox.Ok)
msgBox.exec()
# elif self.canvas_SNR == None:
# msgBox = QMessageBox()
# msgBox.setWindowTitle("Detect bottom Error")
# msgBox.setIcon(QMessageBox.Warning)
# msgBox.setText("Plot transect before compute bathymety algorithm")
# msgBox.setStandardButtons(QMessageBox.Ok)
# msgBox.exec()
# elif (self.canvas_BS) and (self.canvas_SNR == None):
else:
acoustic_data = self.load_BS_acoustic_raw_data()
# Selecting the range in which we look for the bottom reflection
@ -1035,16 +1038,18 @@ class AcousticDataTab(QWidget):
val_bottom = np.zeros(acoustic_data._nb_profiles)
r_bottom_ind = []
# ----------- Detecting the bottom -------------
progessBar = QProgressBar()
for d in range(acoustic_data._nb_profiles):
progessBar.setValue(d)
# Index of the range where we look for the peak
ind_min = np.where(acoustic_data._r >= rmin)[0][0]
ind_max = np.where(acoustic_data._r <= rmax)[0][-1]
# Getting the peak
val_bottom[d] = np.nanmax(acoustic_data._BS_raw_data[ind_min:ind_max,
self.combobox_freq_choice.currentIndex() - 1, d])
self.combobox_freq_choice.currentIndex(), d])
# Getting the range cell of the peak
ind_bottom = np.where(acoustic_data._BS_raw_data[ind_min:ind_max,
self.combobox_freq_choice.currentIndex() - 1, d] == val_bottom[d])[0][0]
self.combobox_freq_choice.currentIndex(), d] == val_bottom[d])[0][0]
r_bottom[d] = acoustic_data._r[ind_bottom + ind_min]
r_bottom_ind.append(ind_bottom + ind_min)
# Updating the range where we will look for the peak (in the next cell)
@ -1059,7 +1064,7 @@ class AcousticDataTab(QWidget):
BS_section_bottom[r_bottom_ind[i]][i] = 1
# print(BS_section_bottom[r_bottom_temp_ind[i]][i])
# --- Plot transect with bathymetry ---
# --- Plot transect BS with bathymetry ---
for f in range(acoustic_data._freq.shape[0]):
self.axis_BS[f].cla()
@ -1071,8 +1076,8 @@ class AcousticDataTab(QWidget):
pcm = self.axis_BS[f].pcolormesh(
acoustic_data._time[np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmin.value())[0][0]:
np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmax.value())[0][0]],
acoustic_data._r ,
np.flipud(acoustic_data._BS_raw_data[:, f,
-acoustic_data._r ,
(acoustic_data._BS_raw_data[:, f,
np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmin.value())[0][0]:
np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmax.value())[0][0]]),
cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max))#, shading='gouraud')
@ -1080,18 +1085,143 @@ class AcousticDataTab(QWidget):
self.axis_BS[f].plot(
acoustic_data._time[np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmin.value())[0][0]:
np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmax.value())[0][0]],
np.max(r_bottom[np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmin.value())[0][0]:
np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmax.value())[0][0]])
# np.max(r_bottom[np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmin.value())[0][0]:
# np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmax.value())[0][0]]),
- r_bottom[np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmin.value())[0][0]:
np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmax.value())[0][0]]
+ np.min(r_bottom[np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmin.value())[0][0]:
np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmax.value())[0][0]]),
np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmax.value())[0][0]],
# + np.min(r_bottom[np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmin.value())[0][0]:
# np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmax.value())[0][0]]),
# np.max(self._model.r_bottom_cross_section) - self._model.r_bottom_cross_section + np.min(self._model.r_bottom_cross_section),
color='black', linewidth=1, linestyle="solid")
# self.axis_BS[f].text(1, .70, acoustic_data._freq_text[f],
# fontsize=14, fontweight='bold', fontname="Ubuntu", c="black", alpha=0.5,
# horizontalalignment='right', verticalalignment='bottom', transform=self.axis_BS[f].transAxes)
self.axis_BS[f].text(1, .70, acoustic_data._freq_text[f],
fontsize=14, fontweight='bold', fontname="Ubuntu", c="black", alpha=0.5,
horizontalalignment='right', verticalalignment='bottom',
transform=self.axis_BS[f].transAxes)
# else:
#
# acoustic_data = self.load_BS_acoustic_raw_data()
# # Selecting the range in which we look for the bottom reflection
# rmin = np.int(self.spinbox_depth_min.text()) # 4
# rmax = np.int(self.spinbox_depth_max.text()) # 8
#
# # empty result arrays
# r_bottom = np.zeros(acoustic_data._nb_profiles)
# val_bottom = np.zeros(acoustic_data._nb_profiles)
# r_bottom_ind = []
# # ----------- Detecting the bottom -------------
# for d in range(acoustic_data._nb_profiles):
# # Index of the range where we look for the peak
# ind_min = np.where(acoustic_data._r >= rmin)[0][0]
# ind_max = np.where(acoustic_data._r <= rmax)[0][-1]
# # Getting the peak
# val_bottom[d] = np.nanmax(acoustic_data._BS_raw_data[ind_min:ind_max,
# self.combobox_freq_choice.currentIndex() - 1, d])
# # Getting the range cell of the peak
# ind_bottom = np.where(acoustic_data._BS_raw_data[ind_min:ind_max,
# self.combobox_freq_choice.currentIndex() - 1, d] == val_bottom[d])[0][0]
# r_bottom[d] = acoustic_data._r[ind_bottom + ind_min]
# r_bottom_ind.append(ind_bottom + ind_min)
# # Updating the range where we will look for the peak (in the next cell)
# rmin = r_bottom[d] - locale.atof(self.doublespinbox_next_cell.text()) # 0.75
# rmax = r_bottom[d] + locale.atof(self.doublespinbox_next_cell.text()) # 0.75
#
# BS_section_bottom = np.zeros((acoustic_data._BS_raw_data.shape[0], acoustic_data._BS_raw_data.shape[2]))
#
# for i in range(BS_section_bottom.shape[0]):
# # print(r_bottom_temp_ind[i])
# # print(i)
# BS_section_bottom[r_bottom_ind[i]][i] = 1
# # print(BS_section_bottom[r_bottom_temp_ind[i]][i])
#
# # --- Plot transect BS with bathymetry ---
# for f in range(acoustic_data._freq.shape[0]):
# self.axis_BS[f].cla()
#
# val_min = np.min(acoustic_data._BS_raw_data[:, f, :])
# val_max = np.max(acoustic_data._BS_raw_data[:, f, :])
# if val_min == 0:
# val_min = 1e-5
#
# pcm = self.axis_BS[f].pcolormesh(
# acoustic_data._time[np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmin.value())[0][0]:
# np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmax.value())[0][0]],
# -acoustic_data._r,
# (acoustic_data._BS_raw_data[:, f,
# np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmin.value())[0][0]:
# np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmax.value())[0][0]]),
# cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max)) # , shading='gouraud')
#
# self.axis_BS[f].plot(
# acoustic_data._time[np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmin.value())[0][0]:
# np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmax.value())[0][0]],
# # np.max(r_bottom[np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmin.value())[0][0]:
# # np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmax.value())[0][0]]),
# - r_bottom[np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmin.value())[0][0]:
# np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmax.value())[0][0]],
# # + np.min(r_bottom[np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmin.value())[0][0]:
# # np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmax.value())[0][0]]),
# # np.max(self._model.r_bottom_cross_section) - self._model.r_bottom_cross_section + np.min(self._model.r_bottom_cross_section),
# color='black', linewidth=1, linestyle="solid")
#
# self.axis_BS[f].text(1, .70, acoustic_data._freq_text[f],
# fontsize=14, fontweight='bold', fontname="Ubuntu", c="black", alpha=0.5,
# horizontalalignment='right', verticalalignment='bottom',
# transform=self.axis_BS[f].transAxes)
#
#
# # --- Plot transect SNR with bathymetry ---
#
# noise_data = self.compute_SNR()
#
# x, y = np.meshgrid(
# noise_data._time_snr[np.where(np.round(noise_data._time_snr, 2) == self.spinbox_tmin.value())[0][0]:
# np.where(np.round(noise_data._time_snr, 2) == self.spinbox_tmax.value())[0][0]],
# noise_data._r)
#
# for f in range(noise_data._freq.shape[0]):
# self.axis_SNR[f].cla()
#
# val_min = np.min(noise_data._snr[:, f, :])
# val_max = np.max(noise_data._snr[:, f, :])
# if val_min == 0:
# val_min = 1e-5
# if val_max > 1000:
# levels = np.array([00.1, 1, 2, 10, 100, 1000, 1e6])
# else:
# levels = np.array([00.1, 1, 2, 10, 100, val_max])
# bounds = [00.1, 1, 2, 10, 100, 1000, val_max, val_max * 1.2]
# norm = BoundaryNorm(boundaries=bounds, ncolors=300)
#
# cf = self.axis_SNR[f].contourf(x, -y,
# noise_data._snr[:, f,
# np.where(np.round(noise_data._time_snr,
# 2) == self.spinbox_tmin.value())[0][0]:
# np.where(np.round(noise_data._time_snr,
# 2) == self.spinbox_tmax.value())[0][0]],
# levels, cmap='gist_rainbow', norm=norm) # , shading='gouraud')
#
# self.axis_SNR[f].text(1, .70, noise_data._freq_text[f],
# fontsize=14, fontweight='bold', fontname="Ubuntu", c="black", alpha=0.5,
# horizontalalignment='right', verticalalignment='bottom',
# transform=self.axis_SNR[f].transAxes)
#
# self.axis_SNR[f].plot(
# noise_data._time_snr[np.where(np.round(noise_data._time_snr, 2) == self.spinbox_tmin.value())[0][0]:
# np.where(np.round(noise_data._time_snr, 2) == self.spinbox_tmax.value())[0][0]],
# # np.max(r_bottom[np.where(np.round(noise_data._time, 2) == self.spinbox_tmin.value())[0][0]:
# # np.where(np.round(noise_data._time, 2) == self.spinbox_tmax.value())[0][0]])
# - r_bottom[np.where(np.round(noise_data._time_snr, 2) == self.spinbox_tmin.value())[0][0]:
# np.where(np.round(noise_data._time_snr, 2) == self.spinbox_tmax.value())[0][0]],
# # + np.min(r_bottom[np.where(np.round(noise_data._time, 2) == self.spinbox_tmin.value())[0][0]:
# # np.where(np.round(noise_data._time, 2) == self.spinbox_tmax.value())[0][0]]),
# # np.max(self._model.r_bottom_cross_section) - self._model.r_bottom_cross_section + np.min(self._model.r_bottom_cross_section),
# color='black', linewidth=1, linestyle="solid")
#
# self.axis_SNR[f].text(1, .70, acoustic_data._freq_text[f],
# fontsize=14, fontweight='bold', fontname="Ubuntu", c="black", alpha=0.5,
# horizontalalignment='right', verticalalignment='bottom', transform=self.axis_BS[f].transAxes)
# self.fig_BS.supxlabel('Distance from left bank (m)', fontsize=10)
# self.fig_BS.supylabel('Depth (m)', fontsize=10)
@ -1100,4 +1230,5 @@ class AcousticDataTab(QWidget):
# cbar = self.fig_BS.colorbar(pcm, ax=self.axis_BS[:], shrink=1, location='right')
# cbar.set_label(label='Backscatter acoustic signal (V)', rotation=270, labelpad=10)
self.fig_BS.canvas.draw_idle()
# self.fig_SNR.canvas.draw_idle()
return r_bottom, val_bottom, r_bottom_ind, BS_section_bottom

45
settings.py Normal file
View File

@ -0,0 +1,45 @@
""" this file includs global variables shared between tab """
import numpy as np
import pandas as pd
import datetime
path_BS_raw_data = ""
filename_BS_raw_data = ""
BS_raw_data = np.array([])
r = np.array([])
freq = np.array([])
freq_text = list()
time = np.array([])
path_BS_noise_data = ""
filename_BS_noise_data = ""
BS_noise_data = np.array([])
snr = np.array([])
date = []
date_noise = []
hour = []
hour_noise = []
nb_profiles = 0
nb_profiles_per_sec = 0.0
nb_cells = 0
cell_size = 0.0
pulse_length = 0.0
nb_pings_per_sec = 0
nb_pings_averaged_per_profile = 0.0
kt = np.array([])
gain_rx = np.array([])
gain_tx = np.array([])
snr = np.array([])
snr_reshape = np.array([])
time_snr = np.array([])
time_reshape = np.array([])
r_reshape = np.array([])
BS_raw_data_reshape = np.array([])
snr_reshape = np.array([])
DataFrame_acoustic = pd.DataFrame()