acoustic inversion method high concentration file is cleaned from useless commented lines and useless print

dev-brahim
brahim 2025-03-06 10:23:27 +01:00
parent cea9e35498
commit 65a9422f71
1 changed files with 3 additions and 244 deletions

View File

@ -21,7 +21,6 @@
# -*- coding: utf-8 -*-
import matplotlib.pyplot as plt
import numpy as np
import settings as stg
from Model.GrainSizeTools import demodul_granulo, mix_gaussian_model
@ -58,17 +57,6 @@ class AcousticInversionMethodHighConcentration():
(np.log(10) / 20) * (freq * 1e-3) ** 2
return alpha
# ---------- Conmpute FBC ----------
# def compute_FCB(self):
# # print(self.BS_averaged_cross_section_corr.V.shape)
# # print(self.r_2D.shape)
# FCB = np.zeros((256, 4, 1912))
# for f in range(4):
# # print(self.alpha_w_function(self.Freq[f], self.temperature))
# FCB[:, f, :] = np.log(self.BS_averaged_cross_section_corr.V[:, f, :]) + np.log(self.r_3D[:, f, :]) + \
# np.log(2 * self.alpha_w_function(self.Freq[f], self.temperature) * self.r_3D[:, f, :])
# return FCB
# --- Gaussian mixture ---
def compute_particle_size_distribution_in_number_of_particles(self, num_sample, r_grain, frac_vol_cumul):
min_demodul = 1e-6
@ -82,15 +70,6 @@ class AcousticInversionMethodHighConcentration():
sample_demodul.demodul_data_list[2].sigma_list,
sample_demodul.demodul_data_list[2].w_list)
# N_modes = 3
# sample_demodul.print_mode_data(N_modes)
# sample_demodul.plot_interpolation()
# sample_demodul.plot_modes(N_modes)
# print(f"mu_list : {sample_demodul.demodul_data_list[3 - 1].mu_list}")
# print(f"sigma_list : {sample_demodul.demodul_data_list[3 - 1].sigma_list}")
# print(f"w_list : {sample_demodul.demodul_data_list[3 - 1].w_list}")
proba_vol_demodul = proba_vol_demodul / np.sum(proba_vol_demodul)
ss = np.sum(proba_vol_demodul / np.exp(resampled_log_array) ** 3)
proba_num = proba_vol_demodul / np.exp(resampled_log_array) ** 3 / ss
@ -106,23 +85,9 @@ class AcousticInversionMethodHighConcentration():
x = k * a
f = (x ** 2 * (1 - 0.25 * np.exp(-((x - 1.5) / 0.35) ** 2)) * (1 + 0.6 * np.exp(-((x - 2.9) / 1.15) ** 2))) / (
42 + 28 * x ** 2)
# print(f"form factor = {f}")
return f
# def ks(self, num_sample_sand, radius_grain_sand, frac_vol_sand_cumul, freq, C):
def ks(self, proba_num, freq, C):
# --- Calcul de la fonction de form ---
# form_factor = self.form_factor_function_MoateThorne2012(a, freq)
# print(f"form_factor shape = {form_factor}")
# print(f"form_factor = {form_factor}")
#--- Particle size distribution ---
# proba_num = (
# self.compute_particle_size_distribution_in_number_of_particles(
# num_sample=num_sample_sand, r_grain=radius_grain_sand, frac_vol_cumul=frac_vol_sand_cumul[num_sample_sand]))
# print(f"proba_num : {proba_num}")
# --- Compute k_s by dividing two integrals ---
resampled_log_array = np.log(np.logspace(-10, -2, 3000))
a2f2pdf = 0
@ -132,28 +97,17 @@ class AcousticInversionMethodHighConcentration():
a2f2pdf += a**2 * self.form_factor_function_MoateThorne2012(a, freq, C)**2 * proba_num[i]
a3pdf += a**3 * proba_num[i]
# print("form factor ", self.form_factor_function_MoateThorne2012(a, freq, C))
# print(f"a2f2pdf = {a2f2pdf}")
# print(f"a3pdf = {a3pdf}")
ks = np.sqrt(a2f2pdf / a3pdf)
# ks = np.array([0.04452077, 0.11415143, 0.35533713, 2.47960051])
# ks = ks0[ind]
return ks
# ------------- Computing sv ------------- #
def sv(self, ks, M_sand):
# print(f"ks = {ks}")
# print(f"M_sand = {M_sand}")
sv = (3 / (16 * np.pi)) * (ks ** 2) * M_sand
# sv = np.full((stg.r.shape[1], stg.t.shape[1]), sv0)
return sv
# ------------- Computing X ------------- #
def X_exponent(self, freq1, freq2, sv_freq1, sv_freq2):
# X0 = [3.450428714146802, 3.276478927777019, 3.6864638665972893, 0]
# X = X0[ind]
X = np.log(sv_freq1 / sv_freq2) / np.log(freq1 / freq2)
return X
@ -174,165 +128,43 @@ class AcousticInversionMethodHighConcentration():
gain = 10 ** ((RxGain + TxGain) / 20)
# Computing Kt
kt = kt_ref * gain * np.sqrt(tau * cel / (tau_ref * c_ref)) # 1D numpy array
# kt = np.reshape(kt0, (1, 2)) # convert to 2d numpy array to compute J_cross_section
# print(f"kt = {kt}")
# kt_2D = np.repeat(np.array([kt]), stg.r.shape[1], axis=0)
# print("kt 2D ", kt_2D)
# print("kt 2D shape ", kt_2D.shape)
# # kt_3D = np.zeros((kt_2D.shape[1], kt_2D.shape[0], stg.t.shape[1]))
# # for k in range(kt_2D.shape[1]):
# # kt_3D[k, :, :] = np.repeat(kt_2D, stg.t.shape[1], axis=1)[:, k * stg.t.shape[1]:(k + 1) * stg.t.shape[1]]
# kt_3D = np.repeat(kt_2D.transpose()[:, :, np.newaxis], stg.t.shape[1], axis=2)
# # print("kt 3D ", kt_3D)
# print("kt 3D shape ", kt_3D.shape)
return kt
# ------------- Computing J_cross_section ------------- #
def j_cross_section(self, BS, r2D, kt):
# J_cross_section = np.zeros((1, BS.shape[1], BS.shape[2])) # 2 because it's a pair of frequencies
# print("BS.shape", BS.shape)
# print("r2D.shape", r2D.shape)
# print("kt.shape", kt.shape)
# if stg.ABS_name == "Aquascat 1000R":
# print("--------------------------------")
# print("BS : ", BS)
# print("BS min : ", np.nanmin(BS))
# print("BS max : ", np.nanmax(BS))
# print("r2D : ", r2D)
# print("kt shape : ", kt.shape)
# print("kt : ", kt)
# print("--------------------------------")
# for k in range(1):
# J_cross_section[k, :, :] = (3 / (16 * np.pi)) * ((BS[k, :, :]**2 * r2D[k, :, :]**2) / kt[k, :, :]**2)
J_cross_section = (3 / (16 * np.pi)) * ((BS**2 * r2D**2) / kt**2)
# J_cross_section[J_cross_section == 0] = np.nan
# print("J_cross_section.shape", J_cross_section.shape)
# elif stg.ABS_name == "UB-SediFlow":
# for k in range(1):
# J_cross_section[k, :, :] = (3 / (16 * np.pi)) * ((BS[k, :, :]**2 * r2D[0, :, :]**2) / kt[k, :, :]**2)
# print("compute j_cross_section finished")
return J_cross_section
# ------------- Computing alpha_s ------------- #
def alpha_s(self, sv, j_cross_section, depth, alpha_w):
alpha_s = (np.log(sv / j_cross_section) / (4 * depth)) - alpha_w
print("----------------------------")
print(f"sv = {sv}")
print(f"j_cross_section = {j_cross_section}")
print(f"depth = {depth}")
print(f"alpha_w = {alpha_w}")
print(f"(np.log(sv / j_cross_section) / (4 * depth)) = {(np.log(sv / j_cross_section) / (4 * depth))}")
print(f"alpha_s {alpha_s}")
return alpha_s
# ------------- Computing interpolation of fine SSC data obtained from water sampling -------------
# ------------- collected at various depth in the vertical sample -------------
# def M_profile_SCC_fine_interpolated(self, sample_depth, M_profile, range_cells, r_bottom):
# res = np.zeros((len(range_cells),)) * np.nan
# for i in range(len(M_profile) - 1):
# # print(f"i = {i}")
# r_ini = sample_depth[i]
# # print(f"r_ini = {r_ini}")
# c_ini = M_profile[i]
# # print(f"c_ini = {c_ini}")
# r_end = sample_depth[i + 1]
# # print(f"r_end = {r_end}")
# c_end = M_profile[i + 1]
# # print(f"c_end = {c_end}")
#
# # Computing the linear equation
# a = (c_end - c_ini) / (r_end - r_ini)
# # print(f"a = {a}")
# b = c_ini - a * r_ini
# # print(f"b = {b}")
#
# # Finding the indices of r_ini and r_end in the interpolated array
# # print(f"range_cells = {range_cells}")
# loc = (range_cells >= r_ini) * (range_cells < r_end)
# # print(f"loc = {loc}")
# # print(f"loc shape = {len(loc)}")
#
# # Filling the array with interpolation values
# res[loc] = range_cells[loc] * a + b
# # print(res.shape)
# # print(f"res = {res}")
# # print(f"1. res.shape = {res.shape}")
#
# # Filling first and last values
# i = 0
# while np.isnan(res[i]):
# res[i] = M_profile[0]
# i += 1
#
# # Filling the last values
# i = -1
# while np.isnan(res[i]):
# res[i] = M_profile[-1]
# i += -1
# # print(f"res.shape = {res.shape}")
# # print(f"res = {res}")
# # print(f"r_bottom.shape = {r_bottom.shape}")
# # print(f" = {res}")
#
# if r_bottom.shape != (0,):
# res[np.where(range_cells > r_bottom)] = np.nan
#
# loc_point_lin_interp0 = range_cells[np.where((range_cells > sample_depth[0]) & (range_cells < sample_depth[-1]))]
# # print(f"range_cells : {range_cells}")
# # print(f"loc_point_lin_interp0 shape : {len(loc_point_lin_interp0)}")
# # print(f"loc_point_lin_interp0 : {loc_point_lin_interp0}")
# res0 = res[np.where((range_cells > sample_depth[0]) & (range_cells < sample_depth[-1]))]
#
# loc_point_lin_interp = loc_point_lin_interp0[np.where(loc_point_lin_interp0 > range_cells[0])]
# # print(f"loc_point_lin_interp shape : {len(loc_point_lin_interp)}")
# # print(f"loc_point_lin_interp : {loc_point_lin_interp}")
# res = res0[np.where(loc_point_lin_interp0 > range_cells[0])]
#
# # fig, ax = plt.subplots(nrows=1, ncols=1)
# # ax.plot(loc_point_lin_interp, res[:len(loc_point_lin_interp)], marker="*", mfc="blue")
# # ax.plot(sample_depth, M_profile, marker="o", mfc="k", mec="k")
# # plt.show()
#
# return (loc_point_lin_interp, res)
# ------------- Computing interpolation of fine SSC -------------
def M_profile_SCC_fine_interpolated(self, sample_depth, M_profile, range_cells, r_bottom):
'''Computing interpolation of fine SSC data obtained from water sampling
collected at various depth in the vertical sample'''
res = np.zeros((len(range_cells),)) * np.nan
print("range_cells ", range_cells.shape)
l0 = sample_depth
print("l0 = ", l0)
l1 = [l0.index(x) for x in sorted(l0)]
print("l1 = ", l1)
l2 = [l0[k] for k in l1]
print("l2 = ", l2)
c1 = [list(M_profile)[j] for j in l1]
print("c1 = ", c1)
for i in range(len(c1) - 1):
# print("i = ", i)
r_ini = l2[i]
c_ini = c1[i]
r_end = l2[i + 1]
c_end = c1[i + 1]
print("r_ini ", r_ini, "c_ini ", c_ini, "r_end ", r_end, "c_end ", c_end)
# Computing the linear equation
a = (c_end - c_ini) / (r_end - r_ini)
b = c_ini - a * r_ini
print("range_cells ", (range_cells))
# Finding the indices of r_ini and r_end in the interpolated array
loc = (range_cells >= r_ini) * (range_cells < r_end)
print("range_cells >= r_ini ", range_cells >= r_ini)
print("range_cells < r_end ", range_cells < r_end)
print("loc ", loc)
# Filling the array with interpolation values
res[loc] = range_cells[loc] * a + b
print("a = ", a, "b = ", b)
print("res ", res)
# Filling first and last values
i = 0
while np.isnan(res[i]):
@ -346,9 +178,6 @@ class AcousticInversionMethodHighConcentration():
i += -1
if r_bottom.size != 0:
print("res ", res.shape)
print("range_cells ", len(range_cells))
# print("r_bottom ", len(r_bottom))
res[np.where(range_cells > r_bottom)] = np.nan
loc_point_lin_interp0 = range_cells[np.where((range_cells > l2[0]) & (range_cells < l2[-1]))]
@ -357,13 +186,6 @@ class AcousticInversionMethodHighConcentration():
loc_point_lin_interp = loc_point_lin_interp0[np.where(loc_point_lin_interp0 > l2[0])]
res = res0[np.where(loc_point_lin_interp0 > l2[0])]
# fig, ax = plt.subplots(nrows=1, ncols=1)
# ax.plot(res[:len(loc_point_lin_interp)], -loc_point_lin_interp, marker="*", mfc="blue")
# ax.plot(c1, [-x for x in l2], marker="o", mfc="k", mec="k", ls="None")
# ax.set_xlabel("Concentration (g/L)")
# ax.set_ylabel("Depth (m)")
# plt.show()
return (loc_point_lin_interp, res)
# ------------- Computing zeta ------------- #
@ -372,39 +194,6 @@ class AcousticInversionMethodHighConcentration():
delta_r = r[1] - r[0]
zeta = alpha_s / (np.sum(np.array(M_profile_fine)*delta_r))
# print(f"np.sum(M_profile_fine*delta_r) : {np.sum(M_profile_fine*delta_r)}")
# zeta0 = np.array([0.021, 0.035, 0.057, 0.229])
# zeta = zeta0[ind]
# zeta0 = np.array([0.04341525, 0.04832906, 0.0847188, np.nan])
# zeta = zeta0[[ind1, ind2]]
# for k in range(3):
# for p in range(3):
# if np.isnan(ind_X_min_around_sample[p, k]):
# zeta_list_exp.append(np.nan)
# else:
# ind_X_min = int(ind_X_min_around_sample[p, k])
# ind_X_max = int(ind_X_max_around_sample[p, k])
# ind_r_min = int(ind_r_min_around_sample[p, k])
# ind_r_max = int(ind_r_max_around_sample[p, k])
#
# R_temp = R_cross_section[ind_r_min:ind_r_max, :, ind_X_min:ind_X_max]
# J_temp = J_cross_section[ind_r_min:ind_r_max, :, ind_X_min:ind_X_max]
# aw_temp = aw_cross_section[ind_r_min:ind_r_max, :, ind_X_min:ind_X_max]
# sv_temp_1 = np.repeat([sv_list_temp[3 * k + p]], np.shape(R_temp)[0], axis=0)
# sv_temp = np.swapaxes(np.swapaxes(np.repeat([sv_temp_1], np.shape(R_temp)[2], axis=0), 1, 0), 2, 1)
# ind_depth = np.where(R_cross_section[:, 0, 0] >= M_list_temp[k][0, p + 1])[0][0]
# # Using concentration profile
# zeta_temp = alpha_s / ((1 / M_list_temp[k][0, p + 1]) * (R_cross_section[0, 0, 0] * M_list_temp[k][1, 0] +
# delta_r * np.sum(M_interpolate_list[k][:ind_depth])))
# zeta_temp = (1 / (4 * R_temp) *
# np.log(sv_temp / J_temp) - aw_temp) / ((1 / M_list_temp[k][0, p + 1]) *
# (R_cross_section[0, 0, 0] * M_list_temp[k][
# 1, 0] +
# delta_r * np.sum(
# M_interpolate_list[k][:ind_depth])))
# zeta_list_exp.append(np.mean(np.mean(zeta_temp, axis=0), axis=1))
return zeta
# ------------- Computing VBI ------------- #
@ -415,21 +204,6 @@ class AcousticInversionMethodHighConcentration():
water_attenuation_freq1, water_attenuation_freq2,
X):
# print('self.zeta_exp[ind_j].shape', self.zeta_exp[ind_j])
# print('np.log(self.j_cross_section[:, ind_i, :]).shape', np.log(self.j_cross_section[:, ind_i, :]).shape)
# print('self.r_3D[:, ind_i, :]', self.r_3D[:, ind_i, :].shape)
# print('self.water_attenuation[ind_i]', self.water_attenuation[ind_i])
# print('self.x_exp[0.3-1 MHz]', self.x_exp['0.3-1 MHz'].values[0])
# print("start computing VBI")
# print("================================")
# print(f"zeta_freq2 : {zeta_freq2}")
# print(f"j_cross_section_freq1 : {j_cross_section_freq1.shape}")
# print(f"r2D : {r2D.shape}")
# print(f"water_attenuation_freq1 : {water_attenuation_freq1}")
# print(f"freq1 : {freq1}")
# print(f"X : {X}")
# print("================================")
logVBI = ((zeta_freq2 *
np.log(j_cross_section_freq1 * np.exp(4 * r2D * water_attenuation_freq1) /
(freq1 ** X)) -
@ -438,31 +212,16 @@ class AcousticInversionMethodHighConcentration():
(freq2 ** X))) /
(zeta_freq2 - zeta_freq1))
# logVBI = (freq2**2 * np.log(j_cross_section_freq1 / freq1**X) -
# freq1**2 * np.log(j_cross_section_freq2 / freq2**X)) / (freq2**2 - freq1**2)
# logVBI = (( np.full((stg.r.shape[1], stg.t.shape[1]), zeta_freq2) *
# np.log(j_cross_section_freq1 * np.exp(4 * r2D * np.full((stg.r.shape[1], stg.t.shape[1]), water_attenuation_freq1)) /
# (freq1 ** X)) -
# np.full((stg.r.shape[1], stg.t.shape[1]), zeta_freq1) *
# np.log(j_cross_section_freq2 * np.exp(4 * r2D * np.full((stg.r.shape[1], stg.t.shape[1]), water_attenuation_freq2)) /
# (freq2 ** X))) /
# (zeta_freq2 - zeta_freq1))
print("compute VBI finished")
return np.exp(logVBI)
# ------------- Computing SSC fine ------------- #
def SSC_fine(self, zeta, r2D, VBI, freq, X, j_cross_section, alpha_w):
SSC_fine = (1/zeta) * ( 1/(4 * r2D) * np.log((VBI * freq**X) / j_cross_section) - alpha_w)
print("compute SSC fine finished")
return SSC_fine
# ------------- Computing SSC sand ------------- #
def SSC_sand(self, VBI, freq, X, ks):
SSC_sand = (16 * np.pi * VBI * freq ** X) / (3 * ks**2)
print("compute SSC sand finished")
return SSC_sand