Investigations with inversion method (for high concentrations) have been performed with APAVER 2021 data from UBSediFlow system.

dev-brahim
brahim 2024-01-12 16:20:08 +01:00
parent cb54fdd7ac
commit 72de6ce846
9 changed files with 850 additions and 191 deletions

View File

@ -155,15 +155,33 @@ class demodul_granulo:
self.cumul_interpolated = f_logsize(self.sizes_log_resampled) self.cumul_interpolated = f_logsize(self.sizes_log_resampled)
# Computing volume and number probability from interpolated data # Computing volume and number probability from interpolated data
self.resampled_proba_vol = np.diff(self.cumul_interpolated) self.resampled_proba_vol = np.abs(np.diff(self.cumul_interpolated)) # np.abs is added because probability p
# must be positive in np.random.choice
# used in function below "demodulate"
# Computing number probability, # Computing number probability,
ss = np.sum(self.resampled_proba_vol /(np.exp(self.sizes_log_resampled[:-1]))**3) ss = np.sum(self.resampled_proba_vol /(np.exp(self.sizes_log_resampled[:-1]))**3)
self.resampled_proba_num = (self.resampled_proba_vol / (np.exp(self.sizes_log_resampled[:-1]))**3) / ss self.resampled_proba_num = (self.resampled_proba_vol / (np.exp(self.sizes_log_resampled[:-1]))**3) / ss
# fig, ax = plt.subplots(1, 2)
# ax[0].plot(list(range(len(self.cumul_interpolated))), self.cumul_interpolated)
# ax[0].set_xlabel("n° point")
# ax[0].set_ylabel("cumul interpolated")
#
# ax[1].plot(list(range(len(self.cumul_interpolated)-1)), self.resampled_proba_vol)
# ax[1].set_xlabel("n° point")
# ax[1].set_ylabel("diff cumul interpolated")
#
# plt.show()
def demodulate(self): def demodulate(self):
"""This function demodulates the interpolated probability distribution""" """This function demodulates the interpolated probability distribution"""
# Sampling the size classes. Need to normalize the probability to get sum = 1.0 # Sampling the size classes. Need to normalize the probability to get sum = 1.0
# print("**************************")
# for i in range(self.resampled_proba_vol.shape[0]):
# print(f"vol = {self.resampled_proba_vol[i]}, sum = {np.sum(self.resampled_proba_vol)}, "
# f" p = {self.resampled_proba_vol[i] / np.sum(self.resampled_proba_vol)}")
# print("**************************")
ech_demod = np.random.choice(self.sizes_log_resampled[:-1], (10000,1), ech_demod = np.random.choice(self.sizes_log_resampled[:-1], (10000,1),
p=(self.resampled_proba_vol / np.sum(self.resampled_proba_vol))) p=(self.resampled_proba_vol / np.sum(self.resampled_proba_vol)))
# fitting models from 1 to 10 components # fitting models from 1 to 10 components
@ -182,7 +200,7 @@ class demodul_granulo:
def plot_interpolation(self): def plot_interpolation(self):
"""This method plots the cumulative probability interpolation""" """This method plots the cumulative probability interpolation"""
# ------- Plotting interpolation----------- # # ------- Plotting interpolation----------- #
fig,(ax)=plt.subplots(1, 2, figsize = (11,4), dpi=100) fig, ax = plt.subplots(1, 2, figsize = (11,4), dpi=100)
# Data # Data
ax[0].plot(np.log(self.size_classes), self.proba_cumul_vol, linestyle='', marker='+') ax[0].plot(np.log(self.size_classes), self.proba_cumul_vol, linestyle='', marker='+')

View File

@ -7,7 +7,7 @@ from matplotlib.colors import LogNorm
# path_BS_raw_data = "/home/bmoudjed/Documents/3 SSC acoustic meas project/Graphical interface project/" \ # path_BS_raw_data = "/home/bmoudjed/Documents/3 SSC acoustic meas project/Graphical interface project/" \
# "Data/Acoustic_data/20180107123500.aqa" # "Data/Acoustic_data/20180107123500.aqa"
# path_noise_data = "/home/bmoudjed/Documents/3 SSC acoustic meas project/Graphical interface project/" \ # path_BS_raw_data = "/home/bmoudjed/Documents/3 SSC acoustic meas project/Graphical interface project/" \
# "Data/AcousticNoise_data/20180107121600.aqa" # "Data/AcousticNoise_data/20180107121600.aqa"
@ -15,7 +15,7 @@ class AcousticDataLoader:
def __init__(self, path_BS_raw_data: str): def __init__(self, path_BS_raw_data: str):
self.path_BS_raw_data = path_BS_raw_data # self.path_BS_raw_data = path_BS_raw_data
# --- Load Backscatter acoustic raw data with RawAquascatData class --- # --- Load Backscatter acoustic raw data with RawAquascatData class ---
@ -65,11 +65,13 @@ class AcousticDataLoader:
# print(np.where((self._time) == 155)[0][0]) # print(np.where((self._time) == 155)[0][0])
# fig, ax = plt.subplots(nrows=1, ncols=1) # fig, ax = plt.subplots(nrows=1, ncols=1)
# ax.pcolormesh(self._time[0, :2200], -self._r[0, :], (self._BS_raw_data[0, :, :2200]), # # ax.pcolormesh(self._time[0, :2200], -self._r[0, :], (self._BS_raw_data[0, :, :2200]),
# cmap='viridis', # # cmap='viridis',
# norm=LogNorm(vmin=1e-5, vmax=np.max(self._BS_raw_data[0, :, :2200]))) # , shading='gouraud') # # norm=LogNorm(vmin=1e-5, vmax=np.max(self._BS_raw_data[0, :, :2200]))) # , shading='gouraud')
# ax.pcolormesh(range(self._BS_raw_data.shape[2]), range(self._BS_raw_data.shape[0]), self._BS_raw_data[:, 1, :], cmap='viridis', # ax.pcolormesh(range(self._BS_raw_data.shape[2]), range(self._BS_raw_data.shape[1]), self._BS_raw_data[2, :, :], cmap='viridis',
# norm=LogNorm(vmin=1e-5, vmax=np.max(self._BS_raw_data[:, 0, :]))) # , shading='gouraud') # norm=LogNorm(vmin=1e-5, vmax=np.max(self._BS_raw_data[:, 0, :]))) # , shading='gouraud')
# ax.set_xticks([])
# ax.set_yticks([])
# plt.show() # plt.show()
# --- Plot vertical profile for bottom detection --- # --- Plot vertical profile for bottom detection ---

View File

@ -30,7 +30,10 @@ from Model.udt_extract.raw_extract import raw_extract
# "Rhone_20210519/Rhone_20210519/record/") # "Rhone_20210519/Rhone_20210519/record/")
# path_BS_raw_data0 = ("/home/bmoudjed/Documents/3 SSC acoustic meas project/Graphical interface project/Data/Raw_data_udt/") # path_BS_raw_data0 = ("/home/bmoudjed/Documents/3 SSC acoustic meas project/Graphical interface project/Data/Raw_data_udt/")
# filename0 = "raw_20210519_130000.udt" # filename0 = "raw_20210519_130643.udt"
# path_BS_raw_data0 = ("/home/bmoudjed/Documents/3 SSC acoustic meas project/Graphical interface project/Data/Raw_data_udt/")
# filename0 = "raw_20210520_085958.udt"
# filename = "raw_20210519_115128.udt" # filename = "raw_20210519_115128.udt"
# "raw_20210526_153310.udt" # "raw_20210526_153310.udt"
@ -177,12 +180,15 @@ class AcousticDataLoaderUBSediFlow:
if config == 1: if config == 1:
BS_data = np.array([data_us_dicts[config][channel]['echo_avg_profile']['data'][0]]) BS_data = np.array([data_us_dicts[config][channel]['echo_avg_profile']['data'][0]])
# print("BS_data shape ", BS_data.shape) # print("BS_data shape ", BS_data.shape)
print("******************************") # print("******************************")
date_list = [np.abs(datetime.datetime(2021, 5, 19, 13, 10, 00).timestamp() # date_list = [np.abs(datetime.datetime(2021, 5, 19, 14, 10, 00).timestamp()
- date.timestamp()) for date in data_us_dicts[config][channel]['echo_avg_profile']['time']] # - date.timestamp()) for date in data_us_dicts[config][channel]['echo_avg_profile']['time']]
print(np.where(date_list == np.min(date_list))) # print(date_list)
# == datetime.datetime(2021, 5, 19, 14, 10, 2, 644000)) # print(np.where(date_list == np.min(date_list)))
print("******************************") # print((data_us_dicts[config][channel]['echo_avg_profile']['time'][np.where(date_list == np.min(date_list))[0][0]] -
# data_us_dicts[config][channel]['echo_avg_profile']['time'][0]).total_seconds())
# # == datetime.datetime(2021, 5, 19, 14, 10, 2, 644000))
# print("******************************")
for i in range(self._time.shape[1]): for i in range(self._time.shape[1]):
BS_data = np.append(BS_data, BS_data = np.append(BS_data,
@ -282,6 +288,11 @@ class AcousticDataLoaderUBSediFlow:
self._time = self._time[:, :self._BS_raw_data.shape[2]] self._time = self._time[:, :self._BS_raw_data.shape[2]]
print("self._time.shape ", self._time.shape) print("self._time.shape ", self._time.shape)
# print(f"time : {self._time}")
# print("****************************")
# for i in range(len(self._time[0, :])-1):
# print(self._time[0, i+1] - self._time[0, i])
# print("****************************")
print("self._r.shape ", self._r.shape) print("self._r.shape ", self._r.shape)
@ -345,7 +356,7 @@ class AcousticDataLoaderUBSediFlow:
# --- Plot Backscatter US data --- # --- Plot Backscatter US data ---
# fig, ax = plt.subplots(nrows=1, ncols=1, layout="constrained") # fig, ax = plt.subplots(nrows=1, ncols=1, layout="constrained")
# pcm = ax.pcolormesh(self._time[0, :], -self._r[0, 2:], np.log(self._BS_raw_data[0, 2:, :]), # pcm = ax.pcolormesh(self._time[0, :], -self._r[0, :], np.log(self._BS_raw_data[0, :, :]),
# cmap='plasma')#, shading='gouraud') # cmap='plasma')#, shading='gouraud')
# # pcm = ax.pcolormesh(list(range(self._BS_raw_data.shape[2])), list(range(self._BS_raw_data.shape[1])), # # pcm = ax.pcolormesh(list(range(self._BS_raw_data.shape[2])), list(range(self._BS_raw_data.shape[1])),
# # np.log(self._BS_raw_data[0, :, :]), # # np.log(self._BS_raw_data[0, :, :]),

View File

@ -83,10 +83,10 @@ class AcousticInversionMethodHighConcentration():
x = k * a x = k * a
f = (x ** 2 * (1 - 0.25 * np.exp(-((x - 1.5) / 0.35) ** 2)) * (1 + 0.6 * np.exp(-((x - 2.9) / 1.15) ** 2))) / ( f = (x ** 2 * (1 - 0.25 * np.exp(-((x - 1.5) / 0.35) ** 2)) * (1 + 0.6 * np.exp(-((x - 2.9) / 1.15) ** 2))) / (
42 + 28 * x ** 2) 42 + 28 * x ** 2)
print(f"form factor = {f}") # print(f"form factor = {f}")
return f return f
def ks(self, freq, pdf): def ks(self, num_sample, freq, pdf):
# --- Calcul de la fonction de form --- # --- Calcul de la fonction de form ---
# form_factor = self.form_factor_function_MoateThorne2012(a, freq) # form_factor = self.form_factor_function_MoateThorne2012(a, freq)
# print(f"form_factor shape = {form_factor}") # print(f"form_factor shape = {form_factor}")
@ -95,7 +95,7 @@ class AcousticInversionMethodHighConcentration():
#--- Particle size distribution --- #--- Particle size distribution ---
proba_num = ( proba_num = (
self.compute_particle_size_distribution_in_number_of_particles( self.compute_particle_size_distribution_in_number_of_particles(
num_sample=2, r_grain=stg.radius_grain, frac_vol_cumul=stg.frac_vol_sand_cumul)) num_sample=num_sample, r_grain=stg.radius_grain, frac_vol_cumul=stg.frac_vol_sand_cumul))
print(f"proba_num : {proba_num}") print(f"proba_num : {proba_num}")
@ -228,9 +228,13 @@ class AcousticInversionMethodHighConcentration():
# print(f"range_cells = {range_cells}") # print(f"range_cells = {range_cells}")
loc = (range_cells >= r_ini) * (range_cells < r_end) loc = (range_cells >= r_ini) * (range_cells < r_end)
# print(f"loc = {loc}") # print(f"loc = {loc}")
# print(f"loc shape = {len(loc)}")
# Filling the array with interpolation values # Filling the array with interpolation values
res[loc] = range_cells[loc] * a + b res[loc] = range_cells[loc] * a + b
# print(res.shape)
# print(f"res = {res}") # print(f"res = {res}")
# print(f"1. res.shape = {res.shape}")
# Filling first and last values # Filling first and last values
i = 0 i = 0
@ -247,20 +251,24 @@ class AcousticInversionMethodHighConcentration():
if stg.r_bottom.size != 0: if stg.r_bottom.size != 0:
res[np.where(range_cells > r_bottom)] = np.nan res[np.where(range_cells > r_bottom)] = np.nan
# print(f"res.shape = {res.shape}") # print(f"2. res.shape = {res.shape}")
# print(f"res = {res}") # print(f"res = {res}")
loc_point_lin_interp0 = range_cells[np.where((range_cells > sample_depth[0]) & (range_cells < sample_depth[-1]))] loc_point_lin_interp0 = range_cells[np.where((range_cells > sample_depth[0]) & (range_cells < sample_depth[-1]))]
# print(f"range_cells : {range_cells}") # print(f"range_cells : {range_cells}")
# print(f"loc_point_lin_interp0 shape : {len(loc_point_lin_interp0)}")
# print(f"loc_point_lin_interp0 : {loc_point_lin_interp0}") # print(f"loc_point_lin_interp0 : {loc_point_lin_interp0}")
res0 = res[np.where((range_cells > sample_depth[0]) & (range_cells < sample_depth[-1]))]
loc_point_lin_interp = loc_point_lin_interp0[np.where(loc_point_lin_interp0 > range_cells[0])] loc_point_lin_interp = loc_point_lin_interp0[np.where(loc_point_lin_interp0 > range_cells[0])]
# print(f"loc_point_lin_interp shape : {len(loc_point_lin_interp)}")
# print(f"loc_point_lin_interp : {loc_point_lin_interp}") # print(f"loc_point_lin_interp : {loc_point_lin_interp}")
res = res0[np.where(loc_point_lin_interp0 > range_cells[0])]
# fig, ax = plt.subplots(nrows=1, ncols=1) fig, ax = plt.subplots(nrows=1, ncols=1)
# ax.plot(loc_point_lin_interp, res[:len(loc_point_lin_interp)], c="blue") ax.plot(loc_point_lin_interp, res[:len(loc_point_lin_interp)], marker="*", mfc="blue")
# ax.plot(sample_depth, M_profile, color="k", marker="o") ax.plot(sample_depth, M_profile, marker="o", mfc="k", mec="k")
# plt.show() plt.show()
return (loc_point_lin_interp, res) return (loc_point_lin_interp, res)
@ -270,6 +278,7 @@ class AcousticInversionMethodHighConcentration():
delta_r = r[1] - r[0] delta_r = r[1] - r[0]
zeta = alpha_s / (np.sum(M_profile_fine*delta_r)) zeta = alpha_s / (np.sum(M_profile_fine*delta_r))
print(f"np.sum(M_profile_fine*delta_r) : {np.sum(M_profile_fine*delta_r)}")
# zeta0 = np.array([0.021, 0.035, 0.057, 0.229]) # zeta0 = np.array([0.021, 0.035, 0.057, 0.229])
# zeta = zeta0[ind] # zeta = zeta0[ind]
# zeta0 = np.array([0.04341525, 0.04832906, 0.0847188, np.nan]) # zeta0 = np.array([0.04341525, 0.04832906, 0.0847188, np.nan])
@ -335,6 +344,9 @@ class AcousticInversionMethodHighConcentration():
(freq2 ** X))) / (freq2 ** X))) /
(zeta_freq2 - zeta_freq1)) (zeta_freq2 - zeta_freq1))
# logVBI = (freq2**2 * np.log(j_cross_section_freq1 / freq1**X) -
# freq1**2 * np.log(j_cross_section_freq2 / freq2**X)) / (freq2**2 - freq1**2)
# logVBI = (( np.full((stg.r.shape[1], stg.t.shape[1]), zeta_freq2) * # logVBI = (( np.full((stg.r.shape[1], stg.t.shape[1]), zeta_freq2) *
# np.log(j_cross_section_freq1 * np.exp(4 * r2D * np.full((stg.r.shape[1], stg.t.shape[1]), water_attenuation_freq1)) / # np.log(j_cross_section_freq1 * np.exp(4 * r2D * np.full((stg.r.shape[1], stg.t.shape[1]), water_attenuation_freq1)) /
# (freq1 ** X)) - # (freq1 ** X)) -
@ -348,8 +360,8 @@ class AcousticInversionMethodHighConcentration():
return np.exp(logVBI) return np.exp(logVBI)
# ------------- Computing SSC fine ------------- # # ------------- Computing SSC fine ------------- #
def SSC_fine(self, zeta, r2D, VBI, freq, X, j_cross_section): def SSC_fine(self, zeta, r2D, VBI, freq, X, j_cross_section, alpha_w):
SSC_fine = (1/zeta) * ( 1/(4 * r2D) * np.log((VBI * freq**X) / j_cross_section) ) SSC_fine = (1/zeta) * ( 1/(4 * r2D) * np.log((VBI * freq**X) / j_cross_section) - alpha_w)
print("compute SSC fine finished") print("compute SSC fine finished")
return SSC_fine return SSC_fine

View File

@ -42,9 +42,8 @@ class GranuloLoader:
# ============================================================================================================== # ==============================================================================================================
# ============================================================================================================== # ==============================================================================================================
# print(self._r_grain.shape) # N_sample = 0
# N_sample = 2 # #
#
# fig, ax = plt.subplots(1, 2) # fig, ax = plt.subplots(1, 2)
# ax[0].plot(self._r_grain, self._frac_vol[N_sample, :], color="k", marker='.') # ax[0].plot(self._r_grain, self._frac_vol[N_sample, :], color="k", marker='.')
# ax[0].set_xscale('log') # ax[0].set_xscale('log')
@ -57,17 +56,20 @@ class GranuloLoader:
# #
# plt.show() # plt.show()
# #
# print(f"self._r_grain.shape : {self._r_grain.shape}")
# print(f"self._r_grain : {self._r_grain}") # print(f"self._r_grain : {self._r_grain}")
# print(f"self._frac_vol_cumul.shape : {self._frac_vol_cumul[N_sample, :].shape}")
# print(f"self._frac_vol_cumul[N_sample, :] : {self._frac_vol_cumul[N_sample, :]}") # print(f"self._frac_vol_cumul[N_sample, :] : {self._frac_vol_cumul[N_sample, :]}")
# # print(np.where(self._frac_vol_cumul[N_sample, :] > 0))
# #
# min_demodul = 1e-6 # min_demodul = 1e-6
# max_demodul = 500e-6 # max_demodul = 500e-6
# sample_demodul = demodul_granulo(self._r_grain, # sample_demodul = demodul_granulo(self._r_grain[:],
# self._frac_vol_cumul[N_sample, :], # self._frac_vol_cumul[N_sample, :],
# min_demodul, max_demodul) # min_demodul, max_demodul)
# #
# print(f"sample_demodul : {sample_demodul.demodul_data_list}") # print(f"sample_demodul : {sample_demodul.demodul_data_list}")
#
# N_modes = 3 # N_modes = 3
# sample_demodul.print_mode_data(N_modes) # sample_demodul.print_mode_data(N_modes)
# sample_demodul.plot_interpolation() # sample_demodul.plot_interpolation()
@ -120,10 +122,14 @@ class GranuloLoader:
# if __name__ == "__main__": # if __name__ == "__main__":
# # GranuloLoader("/home/bmoudjed/Documents/3 SSC acoustic meas project/Graphical interface project/Data/Granulo_data/" # GranuloLoader("/home/bmoudjed/Documents/3 SSC acoustic meas project/Graphical interface project/Data/Granulo_data/"
# # "fine_sample_file.ods") # "fine_sample_file.ods")
# GranuloLoader("/home/bmoudjed/Documents/3 SSC acoustic meas project/Graphical interface project/Data/Granulo_data/" # GranuloLoader("/home/bmoudjed/Documents/3 SSC acoustic meas project/Graphical interface project/Data/Granulo_data/"
# "sand_sample_file.ods") # "sand_sample_file.ods")
# GranuloLoader("/home/bmoudjed/Documents/3 SSC acoustic meas project/Graphical interface project/Data/"
# "pt_acoused_cnr_7nov2023/echantil/fine_new_file_acoused_101RDS 3.ods")
# GranuloLoader("/home/bmoudjed/Documents/3 SSC acoustic meas project/Graphical interface project/Data/"
# "pt_acoused_cnr_7nov2023/echantil/sand_new_file_acoused_101RDS 3.ods")

View File

@ -1,7 +1,7 @@
import sys import sys
from PyQt5.QtWidgets import QWidget, QMainWindow, QApplication, QVBoxLayout, QHBoxLayout, QGroupBox, QComboBox, \ from PyQt5.QtWidgets import QWidget, QMainWindow, QApplication, QVBoxLayout, QHBoxLayout, QGroupBox, QComboBox, \
QGridLayout, QLabel, QPushButton, QSpinBox QGridLayout, QLabel, QPushButton, QSpinBox, QDoubleSpinBox
from PyQt5.QtCore import QCoreApplication, Qt from PyQt5.QtCore import QCoreApplication, Qt
from PyQt5.QtGui import QStandardItemModel from PyQt5.QtGui import QStandardItemModel
@ -15,6 +15,10 @@ from matplotlib.colors import LogNorm, BoundaryNorm, CSS4_COLORS
from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolBar from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolBar
import datetime
from scipy import stats
import Translation.constant_string as cs import Translation.constant_string as cs
from View.checkable_combobox import CheckableComboBox from View.checkable_combobox import CheckableComboBox
@ -88,14 +92,52 @@ class AcousticInversionTab(QWidget):
self.combobox_acoustic_inversion_method_choice.addItems([" ", "Acoustic inversion method 1"]) self.combobox_acoustic_inversion_method_choice.addItems([" ", "Acoustic inversion method 1"])
self.combobox_acoustic_inversion_method_choice.currentIndexChanged.connect( self.combobox_acoustic_inversion_method_choice.currentIndexChanged.connect(
self.acoustic_inversion_method_choice) self.acoustic_inversion_method_choice)
# self.combobox_acoustic_inversion_method_choice.currentIndexChanged.connect(
# self.plot_transect_with_sample_position)
self.label_sample_choice = QLabel() self.groupbox_calibration_samples = QGroupBox()
self.gridLayout_groupbox_acoustic_inversion_options.addWidget(self.label_sample_choice, 1, 0, 1, 1) self.groupbox_calibration_samples.setTitle("Sample choice for calibration")
self.label_sample_choice.setText("Calibration samples : ") self.gridLayout_groupbox_acoustic_inversion_options.addWidget(self.groupbox_calibration_samples, 1, 0, 1, 2)
self.combobox_calibration_samples = QComboBox() self.gridLayout_groupbox_calibration_samples = QGridLayout(self.groupbox_calibration_samples)
self.gridLayout_groupbox_acoustic_inversion_options.addWidget(self.combobox_calibration_samples, 1, 1, 1, 1)
self.combobox_calibration_samples.currentIndexChanged.connect(self.sample_choice) self.label_frequency = QLabel()
self.label_frequency.setText("Frequency :")
self.gridLayout_groupbox_calibration_samples.addWidget(self.label_frequency, 0, 0, 1, 1)
self.combobox_frequency = QComboBox()
self.gridLayout_groupbox_calibration_samples.addWidget(self.combobox_frequency, 0, 1, 1, 1)
self.combobox_frequency.currentIndexChanged.connect(self.update_plot_transect_with_sample_position)
self.label_sand_sample_choice = QLabel()
self.label_sand_sample_choice.setText("Sand sediments :")
self.gridLayout_groupbox_calibration_samples.addWidget(self.label_sand_sample_choice, 0, 2, 1, 1)
self.combobox_calibration_sand_sample = CheckableComboBox()
self.gridLayout_groupbox_calibration_samples.addWidget(self.combobox_calibration_sand_sample, 0, 3, 1, 1)
# self.combobox_calibration_sand_sample.currentData.connect(self.update_plot_transect_with_sample_position)
self.combobox_calibration_sand_sample.currentIndexChanged.connect(
self.update_plot_transect_with_sample_position)
# self.combobox_calibration_sand_sample.currentIndexChanged.connect(self.sample_choice)
self.label_fine_sample_choice = QLabel()
self.label_fine_sample_choice.setText("Fine sediments :")
self.gridLayout_groupbox_calibration_samples.addWidget(self.label_fine_sample_choice, 0, 4, 1, 1)
self.combobox_calibration_fine_sample = CheckableComboBox()
self.gridLayout_groupbox_calibration_samples.addWidget(self.combobox_calibration_fine_sample, 0, 5, 1, 1)
# self.combobox_calibration_fine_sample.currentData.connect(self.update_plot_transect_with_sample_position)
self.combobox_calibration_fine_sample.currentIndexChanged.connect(
self.update_plot_transect_with_sample_position)
# self.combobox_calibration_fine_sample.currentIndexChanged.connect(self.sample_choice)
self.groupbox_plot_sample_position_on_transect = QGroupBox()
self.gridLayout_groupbox_calibration_samples.addWidget(self.groupbox_plot_sample_position_on_transect, 1, 0, 1, 6)
self.verticalLayout_groupbox_plot_sample_position_on_transect = QVBoxLayout(self.groupbox_plot_sample_position_on_transect)
self.canvas_plot_sample_position_on_transect = None
# self.verticalLayout_groupbox_plot_sample_position_on_transect.addWidget(self.canvas_plot_sample_position_on_transect)
# +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
@ -107,41 +149,111 @@ class AcousticInversionTab(QWidget):
self.groupbox_acoustic_inversion_settings_parameter.setTitle("Acoustic inversion method settings parameter") self.groupbox_acoustic_inversion_settings_parameter.setTitle("Acoustic inversion method settings parameter")
self.groupbox_parameter = QGroupBox()
self.gridLayout_groupbox_acoustic_inversion_settings_parameter.addWidget(self.groupbox_parameter, 0, 0, 1, 2)
self.gridLayout_groupbox_parameter = QGridLayout(self.groupbox_parameter)
self.label_temperature = QLabel() self.label_temperature = QLabel()
self.label_temperature.setText("Temperature : ") self.label_temperature.setText("Temperature : ")
self.gridLayout_groupbox_acoustic_inversion_settings_parameter.addWidget(self.label_temperature, 0, 0, 1, 1) # self.gridLayout_groupbox_acoustic_inversion_settings_parameter.addWidget(self.label_temperature, 0, 0, 1, 1)
self.spinbox_temperature = QSpinBox() self.gridLayout_groupbox_parameter.addWidget(self.label_temperature, 0, 0, 1, 1)
self.gridLayout_groupbox_acoustic_inversion_settings_parameter.addWidget(self.spinbox_temperature, 0, 1, 1, 1) self.spinbox_temperature = QDoubleSpinBox()
# self.gridLayout_groupbox_acoustic_inversion_settings_parameter.addWidget(self.spinbox_temperature, 0, 1, 1, 1)
self.gridLayout_groupbox_parameter.addWidget(self.spinbox_temperature, 0, 1, 1, 1)
self.spinbox_temperature.valueChanged.connect(self.temperature_value) self.spinbox_temperature.valueChanged.connect(self.temperature_value)
self.label_frequencies_pairs_to_compute_VBI = QLabel() self.label_frequencies_pairs_to_compute_VBI = QLabel()
self.label_frequencies_pairs_to_compute_VBI.setText("frequencies for VBI : ") self.label_frequencies_pairs_to_compute_VBI.setText("Frequencies for VBI")
self.gridLayout_groupbox_acoustic_inversion_settings_parameter.addWidget( self.gridLayout_groupbox_parameter.addWidget(
self.label_frequencies_pairs_to_compute_VBI, 1, 0, 1, 1) self.label_frequencies_pairs_to_compute_VBI, 1, 1, 1, 1)
self.combobox_frequencies_VBI = QComboBox() # self.combobox_frequencies_VBI = QComboBox()
self.gridLayout_groupbox_acoustic_inversion_settings_parameter.addWidget( # self.gridLayout_groupbox_acoustic_inversion_settings_parameter.addWidget(
self.combobox_frequencies_VBI, 1, 1, 1, 1) # self.combobox_frequencies_VBI, 1, 1, 1, 1)
self.combobox_frequencies_VBI.currentIndexChanged.connect(self.frequencies_pair_choice_to_compute_VBI) # self.combobox_frequencies_VBI.currentIndexChanged.connect(self.frequencies_pair_choice_to_compute_VBI)
self.label_frequency_to_compute_SSC = QLabel() self.label_ks = QLabel()
self.label_frequency_to_compute_SSC.setText("frequencies for SSC : ") self.label_ks.setText("ks")
self.gridLayout_groupbox_acoustic_inversion_settings_parameter.addWidget( self.gridLayout_groupbox_parameter.addWidget(self.label_ks, 1, 2, 1, 1)
self.label_frequency_to_compute_SSC, 2, 0, 1, 1)
self.combobox_frequency_SSC = QComboBox() self.label_sv = QLabel()
self.gridLayout_groupbox_acoustic_inversion_settings_parameter.addWidget( self.label_sv.setText("sv")
self.combobox_frequency_SSC, 2, 1, 1, 1) self.gridLayout_groupbox_parameter.addWidget(self.label_sv, 1, 3, 1, 1)
self.combobox_frequency_SSC.currentIndexChanged.connect(self.frequency_choice_to_compute_SSC)
self.label_X = QLabel()
self.label_X.setText("X")
self.gridLayout_groupbox_parameter.addWidget(self.label_X, 1, 4, 1, 1)
self.label_alphas = QLabel()
self.label_alphas.setText("\u03B1s")
self.gridLayout_groupbox_parameter.addWidget(self.label_alphas, 1, 5, 1, 1)
self.label_zeta = QLabel()
self.label_zeta.setText("\u03B6")
self.gridLayout_groupbox_parameter.addWidget(self.label_zeta, 1, 6, 1, 1)
self.label_freq1 = QLabel()
self.label_freq1.setText("Frequency 1 : ")
self.gridLayout_groupbox_parameter.addWidget(self.label_freq1, 2, 0, 1, 1)
self.label_freq2 = QLabel()
self.label_freq2.setText("Frequency 2 : ")
self.gridLayout_groupbox_parameter.addWidget(self.label_freq2, 3, 0, 1, 1)
self.combobox_freq1 = QComboBox()
self.gridLayout_groupbox_parameter.addWidget(self.combobox_freq1, 2, 1, 1, 1)
self.combobox_freq2 = QComboBox()
self.gridLayout_groupbox_parameter.addWidget(self.combobox_freq2, 3, 1, 1, 1)
self.spinbox_ks_freq1 = QDoubleSpinBox()
self.gridLayout_groupbox_parameter.addWidget(self.spinbox_ks_freq1, 2, 2, 1, 1)
self.spinbox_ks_freq2 = QDoubleSpinBox()
self.gridLayout_groupbox_parameter.addWidget(self.spinbox_ks_freq2, 3, 2, 1, 1)
self.spinbox_sv_freq1 = QDoubleSpinBox()
self.gridLayout_groupbox_parameter.addWidget(self.spinbox_sv_freq1, 2, 3, 1, 1)
self.spinbox_sv_freq2 = QDoubleSpinBox()
self.gridLayout_groupbox_parameter.addWidget(self.spinbox_sv_freq2, 3, 3, 1, 1)
self.spinbox_X = QDoubleSpinBox()
self.gridLayout_groupbox_parameter.addWidget(self.spinbox_X, 2, 4, 1, 1)
self.spinbox_alphas_freq1 = QDoubleSpinBox()
self.gridLayout_groupbox_parameter.addWidget(self.spinbox_alphas_freq1, 2, 5, 1, 1)
self.spinbox_alphas_freq2 = QDoubleSpinBox()
self.gridLayout_groupbox_parameter.addWidget(self.spinbox_alphas_freq2, 3, 5, 1, 1)
self.spinbox_zeta_freq1 = QDoubleSpinBox()
self.gridLayout_groupbox_parameter.addWidget(self.spinbox_zeta_freq1, 2, 6, 1, 1)
self.spinbox_zeta_freq2 = QDoubleSpinBox()
self.gridLayout_groupbox_parameter.addWidget(self.spinbox_zeta_freq2, 3, 6, 1, 1)
# self.label_frequency_to_compute_SSC = QLabel()
# self.label_frequency_to_compute_SSC.setText("frequencies for SSC : ")
# # self.gridLayout_groupbox_acoustic_inversion_settings_parameter.addWidget(
# # self.label_frequency_to_compute_SSC, 2, 0, 1, 1)
# self.gridLayout_groupbox_parameter.addWidget(self.label_frequency_to_compute_SSC, 3, 0, 1, 1)
# self.combobox_frequency_SSC = QComboBox()
# # self.gridLayout_groupbox_acoustic_inversion_settings_parameter.addWidget(
# # self.combobox_frequency_SSC, 2, 1, 1, 1)
# self.gridLayout_groupbox_parameter.addWidget(self.combobox_frequency_SSC, 3, 1, 1, 1)
# self.combobox_frequency_SSC.currentIndexChanged.connect(self.frequency_choice_to_compute_SSC)
self.pushbutton_run = QPushButton() self.pushbutton_run = QPushButton()
self.pushbutton_run.setText("RUN") self.pushbutton_run.setText("RUN")
self.gridLayout_groupbox_acoustic_inversion_settings_parameter.addWidget(self.pushbutton_run, 3, 0, 1, 1) self.gridLayout_groupbox_acoustic_inversion_settings_parameter.addWidget(self.pushbutton_run, 1, 0, 1, 1)
self.pushbutton_run.clicked.connect(self.compute_acoustic_inversion_method_high_concentration) self.pushbutton_run.clicked.connect(self.compute_acoustic_inversion_method_high_concentration)
self.pushbutton_plot = QPushButton() self.pushbutton_plot = QPushButton()
self.pushbutton_plot.setText("PLOT") self.pushbutton_plot.setText("PLOT")
self.gridLayout_groupbox_acoustic_inversion_settings_parameter.addWidget(self.pushbutton_plot, 3, 1, 1, 1) self.gridLayout_groupbox_acoustic_inversion_settings_parameter.addWidget(self.pushbutton_plot, 1, 1, 1, 1)
self.pushbutton_plot.clicked.connect(self.plot_SSC_2D_fields) self.pushbutton_plot.clicked.connect(self.plot_SSC_2D_fields)
self.pushbutton_plot.clicked.connect(self.plot_SSC_inverse_VS_measured) self.pushbutton_plot.clicked.connect(self.plot_SSC_inverse_VS_measured)
@ -217,37 +329,197 @@ class AcousticInversionTab(QWidget):
def acoustic_inversion_method_choice(self): def acoustic_inversion_method_choice(self):
if self.combobox_acoustic_inversion_method_choice.currentIndex() == 1: if self.combobox_acoustic_inversion_method_choice.currentIndex() == 1:
# --- add items in combobox of samples to calibrate acoustic inversion method --- self.plot_transect_with_sample_position()
samples_vertical_line = np.split(stg.samples, np.where(np.diff(stg.sample_time) != 0)[0]+1)
# --- add items in combobox of samples (sand and vertical fine) to calibrate acoustic inversion method ---
# samples_vertical_line = np.split(stg.samples, np.where(np.diff(stg.sample_time) != 0)[0]+1)
# self.combobox_calibration_sand_sample.addItem(" ")
# for s in samples_vertical_line:
# self.combobox_calibration_sand_sample.addItem(" - ".join([i for i in s]))
self.combobox_frequency.addItems(stg.freq_text)
self.combobox_calibration_sand_sample.addItems(stg.samples)
# self.combobox_calibration_sand_sample.currentData.connect(self.update_plot_transect_with_sample_position)
self.combobox_calibration_fine_sample.addItems(stg.samples)
# self.combobox_calibration_fine_sample.currentData.connect(self.update_plot_transect_with_sample_position)
self.combobox_freq1.addItems(stg.freq_text)
self.combobox_freq2.addItems(stg.freq_text)
self.combobox_calibration_samples.addItem(" ")
for s in samples_vertical_line:
self.combobox_calibration_samples.addItem(" - ".join([i for i in s]))
# for i in range(len(samples_vertical_line)): # for i in range(len(samples_vertical_line)):
# self.combobox_calibration_samples.setItemChecked(i, False) # self.combobox_calibration_samples.setItemChecked(i, False)
# --- add items in combobox of frequencies for VBI computation --- # --- add items in combobox of frequencies for VBI computation ---
self.combobox_frequencies_VBI.addItem(" ") # self.combobox_frequencies_VBI.addItem(" ")
for k in combinations(stg.freq_text, 2): # for k in combinations(stg.freq_text, 2):
self.combobox_frequencies_VBI.addItem(k[0] + " - " + k[1]) # self.combobox_frequencies_VBI.addItem(k[0] + " - " + k[1])
# print(k) # print(k)
# for i in range(len(list(combinations(stg.freq_text, 2)))): # for i in range(len(list(combinations(stg.freq_text, 2)))):
# self.combobox_frequencies_VBI.setItemChecked(i, False) # self.combobox_frequencies_VBI.setItemChecked(i, False)
print(f"stg.fine_sediment_columns length : {len(stg.fine_sediment_columns)}") # print(f"stg.fine_sediment_columns length : {len(stg.fine_sediment_columns)}")
print(f"stg.fine_sediment_columns : {stg.fine_sediment_columns}") # print(f"stg.fine_sediment_columns : {stg.fine_sediment_columns}")
print(f"stg.frac_vol_fine.shape : {stg.frac_vol_fine.shape}") # print(f"stg.frac_vol_fine.shape : {stg.frac_vol_fine.shape}")
print(f"stg.frac_vol_fine : {stg.frac_vol_fine}") # print(f"stg.frac_vol_fine : {stg.frac_vol_fine}")
def plot_transect_with_sample_position(self):
if self.canvas_plot_sample_position_on_transect == None:
self.verticalLayout_groupbox_plot_sample_position_on_transect.removeWidget(self.canvas_plot_sample_position_on_transect)
self.figure_plot_sample_position_on_transect, self.axis_plot_sample_position_on_transect = \
plt.subplots(nrows=1, ncols=1, layout="constrained")
self.canvas_plot_sample_position_on_transect = FigureCanvas(self.figure_plot_sample_position_on_transect)
self.verticalLayout_groupbox_plot_sample_position_on_transect.addWidget(self.canvas_plot_sample_position_on_transect)
if stg.BS_stream_bed.size == 0:
val_min = np.nanmin(stg.BS_cross_section[stg.freq_bottom_detection, :, :])
val_max = np.nanmax(stg.BS_cross_section[stg.freq_bottom_detection, :, :])
if val_min == 0:
val_min = 1e-5
self.axis_plot_sample_position_on_transect.pcolormesh(
stg.t[stg.freq_bottom_detection, :],
-stg.r[stg.freq_bottom_detection, :],
stg.BS_cross_section[stg.freq_bottom_detection, :, :],
cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max))
if stg.r_bottom.size != 0:
self.axis_plot_sample_position_on_transect.plot(
stg.t[stg.freq_bottom_detection, :],
-stg.r_bottom, color='black', linewidth=1, linestyle="solid")
else:
val_min = np.nanmin(stg.BS_stream_bed[stg.freq_bottom_detection, :, :])
val_max = np.nanmax(stg.BS_stream_bed[stg.freq_bottom_detection, :, :])
if val_min == 0:
val_min = 1e-5
self.axis_plot_sample_position_on_transect.pcolormesh(
stg.t[stg.freq_bottom_detection, :],
-stg.r[stg.freq_bottom_detection, :],
stg.BS_stream_bed[stg.freq_bottom_detection, :, :],
cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max))
if stg.r_bottom.size != 0:
self.axis_plot_sample_position_on_transect.plot(
stg.t[stg.freq_bottom_detection, :], -stg.r_bottom,
color='black', linewidth=1, linestyle="solid")
self.axis_plot_sample_position_on_transect.set_xticks([])
self.axis_plot_sample_position_on_transect.set_yticks([])
self.figure_plot_sample_position_on_transect.canvas.draw_idle()
def update_plot_transect_with_sample_position(self):
# --- List selected sand and fine samples ---
sand_position_list, fine_position_list = self.sample_choice()
# --- Create canvas of Matplotlib figure ---
if stg.BS_raw_data.size == 0:
self.verticalLayout_groupbox_plot_sample_position_on_transect.removeWidget(
self.canvas_plot_sample_position_on_transect)
self.figure_plot_sample_position_on_transect, self.axis_plot_sample_position_on_transect = \
plt.subplots(nrows=1, ncols=1, layout="constrained")
self.canvas_plot_sample_position_on_transect = FigureCanvas(self.figure_plot_sample_position_on_transect)
self.verticalLayout_groupbox_plot_sample_position_on_transect.addWidget(
self.canvas_plot_sample_position_on_transect)
if sand_position_list:
self.axis_plot_sample_position_on_transect.scatter(stg.sample_time[sand_position_list],
stg.sample_depth[sand_position_list],
marker="o", s=20)
if fine_position_list:
self.axis_plot_sample_position_on_transect.scatter(stg.sample_time[fine_position_list],
stg.sample_depth[fine_position_list],
marker="o", s=14)
self.axis_plot_sample_position_on_transect.set_xticks([])
self.axis_plot_sample_position_on_transect.set_yticks([])
self.figure_plot_sample_position_on_transect.canvas.draw_idle()
elif stg.BS_stream_bed.size == 0:
val_min = np.nanmin(stg.BS_cross_section[stg.freq_bottom_detection, :, :])
val_max = np.nanmax(stg.BS_cross_section[stg.freq_bottom_detection, :, :])
if val_min == 0:
val_min = 1e-5
self.axis_plot_sample_position_on_transect.pcolormesh(
stg.t[stg.freq_bottom_detection, :], -stg.r[stg.freq_bottom_detection, :],
stg.BS_cross_section[self.combobox_frequency.currentIndex(), :, :],
cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max))
if stg.r_bottom.size != 0:
self.axis_plot_sample_position_on_transect.plot(
stg.t[stg.freq_bottom_detection, :], -stg.r_bottom,
color='black', linewidth=1, linestyle="solid")
if sand_position_list:
self.axis_plot_sample_position_on_transect.scatter(stg.sample_time[sand_position_list],
stg.sample_depth[sand_position_list],
marker="o", s=20)
# markeredgecolor='k', markerfacecolor='none')
if fine_position_list:
self.axis_plot_sample_position_on_transect.scatter(stg.sample_time[fine_position_list],
stg.sample_depth[fine_position_list],
marker="o", s=14)
# markeredgecolor='k', markerfacecolor='k')
self.axis_plot_sample_position_on_transect.set_xticks([])
self.axis_plot_sample_position_on_transect.set_yticks([])
self.figure_plot_sample_position_on_transect.canvas.draw_idle()
else:
val_min = np.nanmin(stg.BS_stream_bed[stg.freq_bottom_detection, :, :])
val_max = np.nanmax(stg.BS_stream_bed[stg.freq_bottom_detection, :, :])
if val_min == 0:
val_min = 1e-5
self.axis_plot_sample_position_on_transect.pcolormesh(
stg.t[stg.freq_bottom_detection, :], -stg.r[stg.freq_bottom_detection, :],
stg.BS_stream_bed[self.combobox_frequency.currentIndex(), :, :],
cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max))
if stg.r_bottom.size != 0:
self.axis_plot_sample_position_on_transect.plot(
stg.t[stg.freq_bottom_detection, :], -stg.r_bottom, color='black', linewidth=1, linestyle="solid")
if sand_position_list:
self.axis_plot_sample_position_on_transect.scatter(stg.sample_time[sand_position_list],
stg.sample_depth[sand_position_list],
marker="o", s=20)
if fine_position_list:
self.axis_plot_sample_position_on_transect.scatter(stg.sample_time[fine_position_list],
stg.sample_depth[fine_position_list],
marker="o", s=14)
self.axis_plot_sample_position_on_transect.set_xticks([])
self.axis_plot_sample_position_on_transect.set_yticks([])
self.figure_plot_sample_position_on_transect.canvas.draw_idle()
def sample_choice(self): def sample_choice(self):
sample_position = [] # --- List selected sand samples ---
# for i in range(self.combobox_calibration_samples.count()): sand_position_list = [int(s[1:])-1 for s in self.combobox_calibration_sand_sample.currentData()]
# if self.combobox_calibration_samples.itemChecked(i): print(f"sand_position_list : {sand_position_list}")
sample_position.append(self.combobox_calibration_samples.currentIndex()) # print(f"sand samples checked : {sand_samples_checked}")
# elif (i in sample_position) and (not self.combobox_calibration_samples.itemChecked(i)):
# sample_position.remove(i) # --- List selected fine samples ---
print(f"sample position : {sample_position}") fine_position_list = [int(s[1:])-1 for s in self.combobox_calibration_fine_sample.currentData()]
print(f"fine_position_list : {fine_position_list}")
# print(f"fine samples checked : {fine_samples_checked}")
return sand_position_list, fine_position_list
def frequencies_pair_choice_to_compute_VBI(self): def frequencies_pair_choice_to_compute_VBI(self):
freq_combination = list(combinations(stg.freq, 2)) freq_combination = list(combinations(stg.freq, 2))
@ -496,7 +768,7 @@ class AcousticInversionTab(QWidget):
print("1/ stg.BS_cross_section_averaged") print("1/ stg.BS_cross_section_averaged")
stg.J_cross_section = ( stg.J_cross_section = (
self.inv_hc.j_cross_section(stg.BS_cross_section_averaged[freq_ind, :, :], self.inv_hc.j_cross_section(stg.BS_cross_section_averaged[freq_ind, :, :],
stg.r_2D[0, :, :stg.BS_cross_section_averaged.shape[2]], stg.r_2D[freq_ind, :, :stg.BS_cross_section_averaged.shape[2]],
kt[freq_ind, :, :])) kt[freq_ind, :, :]))
elif stg.BS_cross_section_SNR_filter.size != 0: elif stg.BS_cross_section_SNR_filter.size != 0:
@ -625,14 +897,40 @@ class AcousticInversionTab(QWidget):
# print(int(self.combobox_frequency_SSC.currentIndex())) # print(int(self.combobox_frequency_SSC.currentIndex()))
# print(stg.zeta[int(self.combobox_frequency_SSC.currentIndex())]) # print(stg.zeta[int(self.combobox_frequency_SSC.currentIndex())])
def range_cells_function(self):
""" Computing the real cell size, that depends on the temperature """
# defaut Aquascat cell size
aquascat_cell_size = stg.r[0, 1] - stg.r[0, 0]
# Pulse duration
tau = aquascat_cell_size * 2 / 1500 # figure 2.9 1500 vitesse du son entrée pour le paramètrage des mesures aquascat
# Sound speed
cel = self.inv_hc.water_velocity(self.spinbox_temperature.value())
# Real cell size
real_cell_size = cel * tau / 2 # voir fig 2.9
# Converting to real cell profile
real_r = np.zeros((stg.freq.shape[0], stg.r.shape[1]))
for i in range(stg.freq.shape[0]):
real_r[i, :] = stg.r[i, :] / aquascat_cell_size * real_cell_size # (/ aquascat_cell_size) pour ramener BS.r entre 0 et 1
# (* real_cell_size) pour remettre les échelles spatiales sur la taille réelle des cellules
# R with right shape (numpy array)
R_real = real_r # np.repeat(real_r, len(stg.freq), axis=1)
print(f"R_real = {R_real.shape}")
return R_real
def compute_acoustic_inversion_method_high_concentration(self): def compute_acoustic_inversion_method_high_concentration(self):
self.temperature_value() self.temperature_value()
# --- List selected sand and fine samples ---
sand_position_list, fine_position_list = self.sample_choice()
if stg.ABS_name == "Aquascat 1000R": if stg.ABS_name == "Aquascat 1000R":
freq1 = 0 # 0 = 300kHz et 1 = 500kHz freq1 = int(self.combobox_freq1.currentIndex()) # 0 = 300kHz et 1 = 500kHz
freq2 = 2 # 2 = 1MHz freq2 = int(self.combobox_freq2.currentIndex()) # 2 = 1MHz
print(f"freq1 = {freq1}, freq2 = {freq2}")
stg.water_velocity = self.inv_hc.water_velocity(stg.temperature) stg.water_velocity = self.inv_hc.water_velocity(stg.temperature)
@ -644,9 +942,12 @@ class AcousticInversionTab(QWidget):
# print("ks value : ", self.inv_hc.ks(a_s=stg.sand_sediment_columns[5:], rho_s=2500, freq=stg.freq[0], pdf=stg.frac_vol_sand[2, :])) # print("ks value : ", self.inv_hc.ks(a_s=stg.sand_sediment_columns[5:], rho_s=2500, freq=stg.freq[0], pdf=stg.frac_vol_sand[2, :]))
# ks_freq1, ks_freq2 = (
# self.inv_hc.ks(num_sample=2, freq=stg.freq[freq1], pdf=stg.frac_vol_sand_cumul[2, :]),
# self.inv_hc.ks(num_sample=2, freq=stg.freq[freq2], pdf=stg.frac_vol_sand_cumul[2, :]))
ks_freq1, ks_freq2 = ( ks_freq1, ks_freq2 = (
self.inv_hc.ks(freq=stg.freq[freq1], pdf=stg.frac_vol_sand_cumul[2, :]), self.inv_hc.ks(num_sample=sand_position_list[0], freq=stg.freq[freq1], pdf=stg.frac_vol_sand_cumul[sand_position_list[0], :]),
self.inv_hc.ks(freq=stg.freq[freq2], pdf=stg.frac_vol_sand_cumul[2, :])) self.inv_hc.ks(num_sample=sand_position_list[0], freq=stg.freq[freq2], pdf=stg.frac_vol_sand_cumul[sand_position_list[0], :]))
# 6 = V11 , 10 = V12 sur le notebook d'Adrien # 6 = V11 , 10 = V12 sur le notebook d'Adrien
# ks_freq1, ks_freq2 = self.inv_hc.ks()[0], self.inv_hc.ks()[2] # ks_freq1, ks_freq2 = self.inv_hc.ks()[0], self.inv_hc.ks()[2]
print(f"ks_freq1 = {ks_freq1}, ks_freq2 = {ks_freq2}") print(f"ks_freq1 = {ks_freq1}, ks_freq2 = {ks_freq2}")
@ -656,8 +957,12 @@ class AcousticInversionTab(QWidget):
# ax.plot(list(range(len(np.log(np.logspace(-10, -2, 3000))))), f, color="k", ls="solid") # ax.plot(list(range(len(np.log(np.logspace(-10, -2, 3000))))), f, color="k", ls="solid")
# plt.show() # plt.show()
# sv_freq1, sv_freq2 = (
# self.inv_hc.sv(ks=ks_freq1, M_sand=stg.Ctot_sand[2]),
# self.inv_hc.sv(ks=ks_freq2, M_sand=stg.Ctot_sand[2]))
sv_freq1, sv_freq2 = ( sv_freq1, sv_freq2 = (
self.inv_hc.sv(ks=ks_freq1, M_sand=stg.Ctot_sand[2]), self.inv_hc.sv(ks=ks_freq2, M_sand=stg.Ctot_sand[2])) self.inv_hc.sv(ks=ks_freq1, M_sand=stg.Ctot_sand[sand_position_list[0]]),
self.inv_hc.sv(ks=ks_freq2, M_sand=stg.Ctot_sand[sand_position_list[0]]))
print(f"sv_freq1 = {sv_freq1}, sv_freq2 = {sv_freq2}") print(f"sv_freq1 = {sv_freq1}, sv_freq2 = {sv_freq2}")
X_exponent = self.inv_hc.X_exponent(freq1=stg.freq[freq1], freq2=stg.freq[freq2], sv_freq1=sv_freq1, sv_freq2=sv_freq2) X_exponent = self.inv_hc.X_exponent(freq1=stg.freq[freq1], freq2=stg.freq[freq2], sv_freq1=sv_freq1, sv_freq2=sv_freq2)
@ -717,7 +1022,8 @@ class AcousticInversionTab(QWidget):
r_sample_ind = [] r_sample_ind = []
t_sample_ind = [] t_sample_ind = []
for i in range(len(stg.sample_depth[:3])): for i in range(len(stg.sample_depth[fine_position_list])): #:3
# for i in range(len(stg.sample_depth[:3])): #:3
# print(-stg.sample_depth[i]) # print(-stg.sample_depth[i])
# print(-stg.sample_time[i]) # print(-stg.sample_time[i])
r_sample_ind.append(np.where(np.abs(stg.r[0, :] - (-stg.sample_depth[i])) == r_sample_ind.append(np.where(np.abs(stg.r[0, :] - (-stg.sample_depth[i])) ==
@ -738,6 +1044,8 @@ class AcousticInversionTab(QWidget):
# ind_t_max = int(ind_r_max_around_sample[p, k]) # ind_t_max = int(ind_r_max_around_sample[p, k])
# print(f"ind_t_max = {ind_t_max}") # print(f"ind_t_max = {ind_t_max}")
print(f"stg.BS freq1 = {stg.BS_stream_bed_averaged[freq1, r_sample_ind[-1], t_sample_ind[-1]]}")
print(f"stg.BS freq2 = {stg.BS_stream_bed_averaged[freq2, r_sample_ind[-1], t_sample_ind[-1]]}")
print(f"J_freq1[r_sample_ind[-1], t_sample_ind[-1]] {J_freq1[r_sample_ind[-1], t_sample_ind[-1]]}") print(f"J_freq1[r_sample_ind[-1], t_sample_ind[-1]] {J_freq1[r_sample_ind[-1], t_sample_ind[-1]]}")
print(f"J_freq2[r_sample_ind[-1], t_sample_ind[-1]] {J_freq2[r_sample_ind[-1], t_sample_ind[-1]]}") print(f"J_freq2[r_sample_ind[-1], t_sample_ind[-1]] {J_freq2[r_sample_ind[-1], t_sample_ind[-1]]}")
@ -750,15 +1058,22 @@ class AcousticInversionTab(QWidget):
self.inv_hc.alpha_s(sv=sv_freq2, j_cross_section=J_freq2[r_sample_ind[-1], t_sample_ind[-1]], depth=stg.r[freq2, r_sample_ind[-1]], alpha_w=alpha_w_freq2)) self.inv_hc.alpha_s(sv=sv_freq2, j_cross_section=J_freq2[r_sample_ind[-1], t_sample_ind[-1]], depth=stg.r[freq2, r_sample_ind[-1]], alpha_w=alpha_w_freq2))
print(f"alpha_s_freq1 = {alpha_s_freq1}, alpha_s_freq2 = {alpha_s_freq2}") print(f"alpha_s_freq1 = {alpha_s_freq1}, alpha_s_freq2 = {alpha_s_freq2}")
range_lin_interp, M_profile_fine = self.inv_hc.M_profile_SCC_fine_interpolated(sample_depth=-stg.sample_depth[:3], # range_lin_interp, M_profile_fine = self.inv_hc.M_profile_SCC_fine_interpolated(
M_profile=stg.Ctot_fine[:3], # sample_depth=-stg.sample_depth[:3], #:3
# M_profile=stg.Ctot_fine[:3], #:3
# range_cells=stg.r[0, :],
# r_bottom=stg.r_bottom[t_sample_ind[0][0]])
range_lin_interp, M_profile_fine = self.inv_hc.M_profile_SCC_fine_interpolated(sample_depth=-stg.sample_depth[fine_position_list], #:3
M_profile=stg.Ctot_fine[fine_position_list], #:3
range_cells=stg.r[0, :], range_cells=stg.r[0, :],
r_bottom=stg.r_bottom[t_sample_ind[0][0]]) r_bottom=stg.r_bottom[t_sample_ind[0][0]])
M_profile_fine = M_profile_fine[:len(range_lin_interp)]
print(f"range_lin_interp : {range_lin_interp}") print(f"range_lin_interp : {range_lin_interp}")
print(f"M_profile_fine : {M_profile_fine}") print(f"M_profile_fine : {M_profile_fine}")
M_profile_fine = M_profile_fine[:len(range_lin_interp)]
print(f"M_profile_fine : {M_profile_fine}")
# print("----------------------") # print("----------------------")
# print(f"r_sample_ind[-1][0] = {r_sample_ind[-1][0][0]}") # print(f"r_sample_ind[-1][0] = {r_sample_ind[-1][0][0]}")
# print(f"M_profile_fine[:r_sample_ind[-1][0]] = ", M_profile_fine[:r_sample_ind[-1][0][0]]) # print(f"M_profile_fine[:r_sample_ind[-1][0]] = ", M_profile_fine[:r_sample_ind[-1][0][0]])
@ -775,6 +1090,30 @@ class AcousticInversionTab(QWidget):
# plt.plot(stg.r[0, :], Mprofile, 'b.', -stg.sample_depth[:3], stg.Ctot_fine[:3], 'ko') # plt.plot(stg.r[0, :], Mprofile, 'b.', -stg.sample_depth[:3], stg.Ctot_fine[:3], 'ko')
# plt.show() # plt.show()
# --- Fill spinboxes with values of parameters ---
self.spinbox_ks_freq1.setValue(ks_freq1)
self.spinbox_ks_freq2.setValue(ks_freq2)
self.spinbox_sv_freq1.setValue(sv_freq1)
self.spinbox_sv_freq2.setValue(sv_freq2)
self.spinbox_X.setValue(X_exponent)
self.spinbox_alphas_freq1.setValue(alpha_s_freq1)
self.spinbox_alphas_freq2.setValue(alpha_s_freq2)
self.spinbox_zeta_freq1.setValue(zeta_freq1)
self.spinbox_zeta_freq2.setValue(zeta_freq2)
# fig, ax = plt.subplots(nrows=2, ncols=1)
# pcm1 = ax[0].pcolormesh(stg.t[0, :], -stg.r[0, :], J_freq1,
# cmap='rainbow', vmin=0, vmax=1e-5, shading='gouraud')
# cbar1 = fig.colorbar(pcm1, ax=ax[0], shrink=1, location='right')
# cbar1.set_label(label='J (/m', rotation=270, labelpad=15)
# pcm2 = ax[1].pcolormesh(stg.t[0, :], -stg.r[0, :], J_freq2,
# cmap='rainbow', vmin=0, vmax=1e-4, shading='gouraud')
# cbar2 = fig.colorbar(pcm2, ax=ax[1], shrink=1, location='right')
# cbar2.set_label(label='J (/m', rotation=270, labelpad=15)
# fig.supxlabel("Time (sec)", fontsize=10)
# fig.supylabel("Depth (m)", fontsize=10)
# plt.show()
stg.VBI_cross_section = self.inv_hc.VBI_cross_section(stg.freq[freq1], stg.freq[freq2], stg.VBI_cross_section = self.inv_hc.VBI_cross_section(stg.freq[freq1], stg.freq[freq2],
zeta_freq1, zeta_freq2, zeta_freq1, zeta_freq2,
J_freq1, J_freq2, J_freq1, J_freq2,
@ -783,14 +1122,15 @@ class AcousticInversionTab(QWidget):
X_exponent) X_exponent)
stg.SSC_fine = self.inv_hc.SSC_fine(zeta_freq2, stg.r_2D[freq2, :, :stg.t.shape[1]], stg.SSC_fine = self.inv_hc.SSC_fine(zeta_freq2, stg.r_2D[freq2, :, :stg.t.shape[1]],
stg.VBI_cross_section, stg.freq[freq2], X_exponent, J_freq2) stg.VBI_cross_section, stg.freq[freq2], X_exponent, J_freq2,
np.full(shape=(stg.r.shape[1], stg.t.shape[1]), fill_value=alpha_w_freq2))
stg.SSC_sand = self.inv_hc.SSC_sand(stg.VBI_cross_section, stg.freq[freq2], X_exponent, ks_freq2) stg.SSC_sand = self.inv_hc.SSC_sand(stg.VBI_cross_section, stg.freq[freq2], X_exponent, ks_freq2)
elif stg.ABS_name == "UB-SediFlow": elif stg.ABS_name == "UB-SediFlow":
freq1 = 0 # 0 = 500kHz freq1 = int(self.combobox_freq1.currentIndex()) # 0 = 500kHz
freq2 = 1 # 1 = 1MHz freq2 = int(self.combobox_freq2.currentIndex()) # 1 = 1MHz
stg.water_velocity = self.inv_hc.water_velocity(stg.temperature) stg.water_velocity = self.inv_hc.water_velocity(stg.temperature)
@ -801,29 +1141,46 @@ class AcousticInversionTab(QWidget):
self.compute_sound_velocity() self.compute_sound_velocity()
# ks_freq1, ks_freq2 = 0.11373812635175432, 0.35705575378038723 # ks_freq1, ks_freq2 = 0.11373812635175432, 0.35705575378038723
ks_freq1, ks_freq2 = (self.inv_hc.form_factor_function_MoateThorne2012(a=100e-6, freq=stg.freq[freq1])/np.sqrt(2500*100e-6), # ks_freq1, ks_freq2 = (self.inv_hc.form_factor_function_MoateThorne2012(a=100e-6, freq=stg.freq[freq1])/np.sqrt(2500*100e-6),
self.inv_hc.form_factor_function_MoateThorne2012(a=100e-6, freq=stg.freq[freq2])/np.sqrt(2500*100e-6)) # self.inv_hc.form_factor_function_MoateThorne2012(a=100e-6, freq=stg.freq[freq2])/np.sqrt(2500*100e-6))
ks_freq1, ks_freq2 = (
self.inv_hc.ks(num_sample=sand_position_list[0], freq=stg.freq[freq1], pdf=stg.frac_vol_sand_cumul[sand_position_list[0], :]),
self.inv_hc.ks(num_sample=sand_position_list[0], freq=stg.freq[freq2], pdf=stg.frac_vol_sand_cumul[sand_position_list[0], :]))
# ks_freq1 = 0.05261498026985425
# ks_freq2 = 0.19303997854869764
print(f"ks_freq1 = {ks_freq1}, ks_freq2 = {ks_freq2}") print(f"ks_freq1 = {ks_freq1}, ks_freq2 = {ks_freq2}")
# Fine sediments 19/05/2021 15h11 - 15h42 (locale) = 13h10 - 13h42 (UTC) --> 6 samples
# 52 to 428 / fixed at 234
# 14h10 = position 766
# Sand sediments 20/05/2021 12h04 - 12h20 (locale) = 10h04 - 10h20 (UTC) --> 2 samples
# 777 to 972 / fixed at 777
sv_freq1, sv_freq2 = ( sv_freq1, sv_freq2 = (
self.inv_hc.sv(ks=ks_freq1, M_sand=stg.Ctot_sand[-1]), self.inv_hc.sv(ks=ks_freq1, M_sand=stg.Ctot_sand[sand_position_list[0]]),
self.inv_hc.sv(ks=ks_freq2, M_sand=stg.Ctot_sand[-1])) self.inv_hc.sv(ks=ks_freq2, M_sand=stg.Ctot_sand[sand_position_list[0]]))
# sv_freq1 = 0.0004956686799986783
# sv_freq2 = 0.006672171109602389
print(f"sv_freq1 = {sv_freq1}, sv_freq2 = {sv_freq2}") print(f"sv_freq1 = {sv_freq1}, sv_freq2 = {sv_freq2}")
X_exponent = self.inv_hc.X_exponent(freq1=stg.freq[freq1], freq2=stg.freq[freq2], sv_freq1=sv_freq1, X_exponent = self.inv_hc.X_exponent(freq1=stg.freq[freq1], freq2=stg.freq[freq2],
sv_freq2=sv_freq2) sv_freq1=sv_freq1, sv_freq2=sv_freq2)
# X_exponent = self.inv_hc.X_exponent(ind=2) # X_exponent = 3.750708280862506
print(f"X_exponent = {X_exponent}") print(f"X_exponent = {X_exponent}")
stg.kt = np.array([[1.38e-3], [6.02e-4]]) # Values of kt for 500kHz and 1MHz # stg.kt = np.array([[1.38e-3], [6.02e-4]]) # Values of kt for 500kHz and 1MHz
kt = np.array([]) stg.kt = np.array([[0.5], [0.5]])
for i, v in enumerate(stg.kt):
kt = np.append(kt, self.inv_hc.kt_corrected(r=stg.r[i, :], kt = stg.kt
water_velocity=stg.water_velocity, # kt = np.array([])
RxGain=0, # for i, v in enumerate(stg.kt):
TxGain=0, # kt = np.append(kt, self.inv_hc.kt_corrected(r=stg.r[i, :],
kt_ref=stg.kt[i])) # water_velocity=stg.water_velocity,
kt = np.reshape(kt, (len(kt), 1)) # RxGain=0,
# TxGain=0,
# kt_ref=stg.kt[i]))
# kt = np.reshape(kt, (len(kt), 1))
print(f"kt = {kt}, kt.shape = {kt.shape}") print(f"kt = {kt}, kt.shape = {kt.shape}")
kt2D = np.repeat(np.array(kt), stg.r.shape[1], axis=1) kt2D = np.repeat(np.array(kt), stg.r.shape[1], axis=1)
print(f"kt2D.shape = {kt2D.shape}") print(f"kt2D.shape = {kt2D.shape}")
@ -836,7 +1193,7 @@ class AcousticInversionTab(QWidget):
r_sample_ind = [] r_sample_ind = []
t_sample_ind = [] t_sample_ind = []
for i in range(len(stg.sample_depth[:])): for i in range(len(stg.sample_depth[fine_position_list])):
# print(-stg.sample_depth[i]) # print(-stg.sample_depth[i])
# print(-stg.sample_time[i]) # print(-stg.sample_time[i])
r_sample_ind.append(np.where(np.abs(stg.r[freq1, :] - (-stg.sample_depth[i])) == r_sample_ind.append(np.where(np.abs(stg.r[freq1, :] - (-stg.sample_depth[i])) ==
@ -847,35 +1204,128 @@ class AcousticInversionTab(QWidget):
print(f"r_sample_ind = {r_sample_ind}") print(f"r_sample_ind = {r_sample_ind}")
print(f"t_sample_ind = {t_sample_ind}") print(f"t_sample_ind = {t_sample_ind}")
print(f"stg.BS freq1 = {stg.BS_cross_section[freq1, r_sample_ind[-1], t_sample_ind[-1]]}")
print(f"stg.BS freq2 = {stg.BS_cross_section[freq2, r_sample_ind[-1], t_sample_ind[-1]]}")
print(f"J_freq1[r_sample_ind[-1], t_sample_ind[-1]] : {J_freq1[r_sample_ind[-1][0][0], t_sample_ind[-1][0][0]]}")
# print(f"J_freq1[r_sample_ind[-1]+-n, t_sample_ind[-1]+-n] : {J_freq1[r_sample_ind[-1][0][0], t_sample_ind[-1][0][0]:t_sample_ind[-1][0][0]].mean(axis=0)}")
# delta_t = 0
alpha_s_freq1, alpha_s_freq2 = ( alpha_s_freq1, alpha_s_freq2 = (
self.inv_hc.alpha_s(sv=sv_freq1, j_cross_section=J_freq1[r_sample_ind[-1], t_sample_ind[-1]], self.inv_hc.alpha_s(sv=sv_freq1,
depth=stg.r[freq1, r_sample_ind[-1]], alpha_w=alpha_w_freq1), j_cross_section=np.mean(J_freq1[r_sample_ind[-1][0][0], t_sample_ind[-1][0][0]]),
self.inv_hc.alpha_s(sv=sv_freq2, j_cross_section=J_freq2[r_sample_ind[-1], t_sample_ind[-1]], depth=stg.r[freq1, r_sample_ind[-1][0][0]], alpha_w=alpha_w_freq1),
depth=stg.r[freq2, r_sample_ind[-1]], alpha_w=alpha_w_freq2)) self.inv_hc.alpha_s(sv=sv_freq2,
j_cross_section=np.mean(J_freq2[r_sample_ind[-1][0][0], t_sample_ind[-1][0][0]]),
# j_cross_section=J_freq2[r_sample_ind[-1], t_sample_ind[-1]],
depth=stg.r[freq2, r_sample_ind[-1][0][0]], alpha_w=alpha_w_freq2))
# avec J (alpha_w = 0.03578217234512747)
# alpha_s_freq1 = -0.12087339
# alpha_s_freq2 = -0.01437704
# avec log(J)
# alpha_s_freq1 = -1.91967628
# alpha_s_freq2 = -1.87942544
# --- Calculation of alpha_s with FCB slope ---
# R_real = np.repeat(self.range_cells_function()[:, :, np.newaxis], stg.t.shape[1], axis=2)
# water_attenuation = np.full((2, stg.r.shape[1], stg.t.shape[1]), 1)
# water_attenuation[0, :, :] = alpha_w_freq1*water_attenuation[0, :, :]
# water_attenuation[1, :, :] = alpha_w_freq2*water_attenuation[1, :, :]
# if stg.BS_stream_bed.size == 0:
# stg.FCB = (np.log(stg.BS_cross_section[[freq1, freq2], :, :]) + np.log(R_real[[freq1, freq2], :, :]) +
# 2 * water_attenuation * R_real[[freq1, freq2], :, :])
# elif (stg.BS_stream_bed_averaged.size == 0) and (stg.BS_stream_bed_SNR_filter.size == 0):
# stg.FCB = (np.log(stg.BS_stream_bed[[freq1, freq2], :, :]) + np.log(R_real[[freq1, freq2], :, :]) +
# 2 * water_attenuation * R_real[[freq1, freq2], :, :])
# elif stg.BS_stream_bed_SNR_filter.size == 0:
# stg.FCB = (np.log(stg.BS_stream_bed_averaged[[freq1, freq2], :, :]) + np.log(R_real[[freq1, freq2], :, :]) +
# 2 * water_attenuation * R_real[[freq1, freq2], :, :])
# else:
# stg.FCB = (np.log(stg.BS_stream_bed_SNR_filter[[freq1, freq2], :, :]) + np.log(R_real[[freq1, freq2], :, :]) +
# 2 * water_attenuation * R_real[[freq1, freq2], :, :])
#
# print(f"FCB shape : {stg.FCB.shape}")
#
# y1 = stg.FCB[freq1, 5:138, t_sample_ind[-1][0][0]]
# x1 = stg.r[freq1, 5:138]
# lin_reg_compute1 = stats.linregress(x1, y1)
#
# y2 = stg.FCB[freq2, 5:138, t_sample_ind[-1][0][0]]
# x2 = stg.r[freq2, 5:138]
# lin_reg_compute2 = stats.linregress(x2, y2)
#
# print(f"lin_reg_compute1 : {lin_reg_compute1}")
# print(f"lin_reg_compute2 : {lin_reg_compute2}")
#
# fig, ax = plt.subplots(nrows=1, ncols=2)
# ax[0].plot(x1, y1, ls='solid', c='k')
# ax[0].plot(x1, x1*lin_reg_compute1.slope + lin_reg_compute1.intercept, ls='dashed', c='b')
# ax[0].set_xlabel("Distance from transducer (m)")
# ax[0].set_ylabel("FCB")
# ax[0].set_title("Frequency 500kHz")
# ax[1].plot(x2, y2, ls='solid', c='k')
# ax[1].plot(x2, x2*lin_reg_compute2.slope + lin_reg_compute2.intercept, ls='solid', c='r')
# ax[1].set_xlabel("Distance from transducer (m)")
# ax[1].set_ylabel("FCB")
# ax[1].set_title("Frequency 1MHz")
# plt.show()
#
# alpha_s_freq1 , alpha_s_freq2 = -0.5*lin_reg_compute1.slope, -0.5*lin_reg_compute2.slope
# alpha_s_freq1 = 0.35107724188865586
# alpha_s_freq2 = 0.37059368399238274
print(f"alpha_s_freq1 = {alpha_s_freq1}, alpha_s_freq2 = {alpha_s_freq2}") print(f"alpha_s_freq1 = {alpha_s_freq1}, alpha_s_freq2 = {alpha_s_freq2}")
# range_lin_interp, M_profile_fine = self.inv_hc.M_profile_SCC_fine_interpolated( range_lin_interp, M_profile_fine = self.inv_hc.M_profile_SCC_fine_interpolated(
# sample_depth=-stg.sample_depth[:], sample_depth=-stg.sample_depth[:],
# M_profile=stg.Ctot_sand[:], M_profile=stg.Ctot_fine[:],
# range_cells=stg.r[0, :], range_cells=stg.r[0, :],
# r_bottom=np.array([])) # stg.r_bottom[t_sample_ind[0][0]] is empty r_bottom=np.array([])) # stg.r_bottom[t_sample_ind[0][0]] is empty
# M_profile_fine = M_profile_fine[:len(range_lin_interp)] # M_profile_fine = M_profile_fine[:len(range_lin_interp)]
range_lin_interp, M_profile_fine = 3.2, 1 # range_lin_interp, M_profile_fine = 3.2, 6.5
print(f"range_lin_interp : {range_lin_interp}") print(f"range_lin_interp : {range_lin_interp}")
print(f"M_profile_fine : {M_profile_fine}") print(f"M_profile_fine : {M_profile_fine}")
zeta_freq1, zeta_freq2 = (alpha_s_freq1 / (M_profile_fine*(3.19127224 - 0.52102404)), # zeta_freq1, zeta_freq2 = (alpha_s_freq1 / (M_profile_fine[0]*(3.19127224 - 0.52102404)),
alpha_s_freq2 / (M_profile_fine*(3.19127224 - 0.52102404))) # alpha_s_freq2 / (M_profile_fine[0]*(3.19127224 - 0.52102404)))
# zeta_freq1, zeta_freq2 = ( zeta_freq1, zeta_freq2 = (
# self.inv_hc.zeta(alpha_s=alpha_s_freq1, r=stg.r[freq1, :], M_profile_fine=M_profile_fine), self.inv_hc.zeta(alpha_s=alpha_s_freq1, r=stg.r[freq1, :], M_profile_fine=M_profile_fine),
# self.inv_hc.zeta(alpha_s=alpha_s_freq2, r=stg.r[freq2, :], M_profile_fine=M_profile_fine)) self.inv_hc.zeta(alpha_s=alpha_s_freq2, r=stg.r[freq2, :], M_profile_fine=M_profile_fine))
# zeta_freq1, zeta_freq2 = zeta_freq1*1e-8, zeta_freq2*1e-8
# zeta_freq1 = 0.06417348381928434
# zeta_freq2 = 0.06774089842814904
# zeta_freq1, zeta_freq2 = 0.03018602, 0.05496619
print(f"zeta_freq1 = {zeta_freq1}, zeta_freq2 = {zeta_freq2}") print(f"zeta_freq1 = {zeta_freq1}, zeta_freq2 = {zeta_freq2}")
# zeta_freq1, zeta_freq2 = 1e-10*self.inv_hc.zeta(ind=1), 1e1*self.inv_hc.zeta(ind=2) # zeta_freq1, zeta_freq2 = 1e-10*self.inv_hc.zeta(ind=1), 1e1*self.inv_hc.zeta(ind=2)
# print(f"zeta_freq1 = {zeta_freq1}, zeta_freq2 = {zeta_freq2}") # print(f"zeta_freq1 = {zeta_freq1}, zeta_freq2 = {zeta_freq2}")
# --- Fill spinboxes with values of parameters ---
self.spinbox_ks_freq1.setValue(ks_freq1)
self.spinbox_ks_freq2.setValue(ks_freq2)
self.spinbox_sv_freq1.setValue(sv_freq1)
self.spinbox_sv_freq2.setValue(sv_freq2)
self.spinbox_X.setValue(X_exponent)
self.spinbox_alphas_freq1.setValue(alpha_s_freq1)
self.spinbox_alphas_freq2.setValue(alpha_s_freq2)
self.spinbox_zeta_freq1.setValue(zeta_freq1)
self.spinbox_zeta_freq2.setValue(zeta_freq2)
# fig, ax = plt.subplots(nrows=2, ncols=1)
# pcm1 = ax[0].pcolormesh(stg.t[0, :], -stg.r[0, :], J_freq1,
# cmap='rainbow', shading='gouraud')
# cbar1 = fig.colorbar(pcm1, ax=ax[0], shrink=1, location='right')
# cbar1.set_label(label='J (/m', rotation=270, labelpad=15)
# pcm2 = ax[1].pcolormesh(stg.t[0, :], -stg.r[0, :], J_freq2,
# cmap='rainbow', shading='gouraud')
# cbar2 = fig.colorbar(pcm2, ax=ax[1], shrink=1, location='right')
# cbar2.set_label(label='J (/m', rotation=270, labelpad=15)
# fig.supxlabel("Time (sec)", fontsize=10)
# fig.supylabel("Depth (m)", fontsize=10)
# plt.show()
stg.VBI_cross_section = self.inv_hc.VBI_cross_section(stg.freq[freq1], stg.freq[freq2], stg.VBI_cross_section = self.inv_hc.VBI_cross_section(stg.freq[freq1], stg.freq[freq2],
zeta_freq1, zeta_freq2, zeta_freq1, zeta_freq2,
@ -884,8 +1334,11 @@ class AcousticInversionTab(QWidget):
alpha_w_freq1, alpha_w_freq2, alpha_w_freq1, alpha_w_freq2,
X_exponent) X_exponent)
stg.SSC_fine = self.inv_hc.SSC_fine(zeta_freq2, stg.r_2D[freq2, :, :stg.t.shape[1]], stg.SSC_fine = self.inv_hc.SSC_fine(zeta_freq2, stg.r_2D[freq2, :, :stg.t.shape[1]],
stg.VBI_cross_section, stg.freq[freq2], X_exponent, J_freq2) stg.VBI_cross_section, stg.freq[freq2], X_exponent, J_freq2,
np.full(shape=(stg.r.shape[1], stg.t.shape[1]), fill_value=alpha_w_freq2))
# stg.SSC_fine = self.inv_hc.SSC_fine(stg.zeta[int(self.combobox_frequency_SSC.currentIndex())], # stg.SSC_fine = self.inv_hc.SSC_fine(stg.zeta[int(self.combobox_frequency_SSC.currentIndex())],
# stg.r_2D[int(stg.frequency_to_compute_SSC[0]), :, :stg.t.shape[1]], # stg.r_2D[int(stg.frequency_to_compute_SSC[0]), :, :stg.t.shape[1]],
# stg.VBI_cross_section, # stg.VBI_cross_section,
@ -913,6 +1366,14 @@ class AcousticInversionTab(QWidget):
self.plot_SSC_fine() self.plot_SSC_fine()
self.plot_SSC_sand() self.plot_SSC_sand()
else:
self.verticalLayout_groupbox_SSC_2D_field.removeWidget(self.canvas_SSC_2D_field)
self.verticalLayout_groupbox_SSC_2D_field.addWidget(self.canvas_SSC_2D_field)
self.plot_SSC_fine()
self.plot_SSC_sand()
def plot_SSC_fine(self): def plot_SSC_fine(self):
# val_min = 1e-2 # val_min = 1e-2
@ -941,7 +1402,7 @@ class AcousticInversionTab(QWidget):
-stg.r[0, :], -stg.r[0, :],
stg.SSC_fine, stg.SSC_fine,
cmap='rainbow', cmap='rainbow',
norm=LogNorm(vmin=1e-2, vmax=15), norm=LogNorm(vmin=1e0, vmax=15),
shading='gouraud') shading='gouraud')
# pcm_SSC_fine = self.axis_SSC_2D_field[0].pcolormesh(stg.t[int(stg.frequency_to_compute_SSC[0]), :], # pcm_SSC_fine = self.axis_SSC_2D_field[0].pcolormesh(stg.t[int(stg.frequency_to_compute_SSC[0]), :],
# -stg.r[int(stg.frequency_to_compute_SSC[0]), :], # -stg.r[int(stg.frequency_to_compute_SSC[0]), :],
@ -954,7 +1415,7 @@ class AcousticInversionTab(QWidget):
-stg.r[0, :], -stg.r[0, :],
stg.SSC_fine, stg.SSC_fine,
cmap='rainbow', cmap='rainbow',
norm=LogNorm(vmin=1e-2, vmax=1), norm=LogNorm(vmin=1e-2, vmax=10),
shading='gouraud') shading='gouraud')
@ -1005,14 +1466,21 @@ class AcousticInversionTab(QWidget):
elif stg.ABS_name == "UB-SediFlow": elif stg.ABS_name == "UB-SediFlow":
pcm_SSC_sand = self.axis_SSC_2D_field[1].pcolormesh(stg.t[0, :], pcm_SSC_sand = self.axis_SSC_2D_field[1].pcolormesh(stg.t[0, :],
-stg.r[0, :], -stg.r[0, 5:155],
(stg.SSC_sand), (stg.SSC_sand[5:155, :]),
cmap='rainbow', cmap="plasma",
# vmin=-60, vmax=-45) # cmap='rainbow',
vmin=0, vmax=10,
# vmin=1e-2, vmax=10) # vmin=1e-2, vmax=10)
# vmin=val_min, vmax=val_max, # vmin=val_min, vmax=val_max,
norm=LogNorm(vmin=1e-2, vmax=1), # norm=LogNorm(vmin=1e-2, vmax=1),
shading='gouraud') shading='gouraud')
# self.axis_SSC_2D_field[1].plot(stg.t[1, 52] * np.ones(len(stg.r[1, 5:152])), -stg.r[1, 5:152],
# c='b', ls='solid', lw=2)
# self.axis_SSC_2D_field[1].plot(stg.t[1, ] * np.ones(len(stg.r[1, 5:152])), -stg.r[1, 5:152],
# c='red', ls='solid', lw=2)
self.axis_SSC_2D_field[1].plot(stg.t[1, 777] * np.ones(len(stg.r[1, 5:152])), -stg.r[1, 5:152],
c='red', ls='solid', lw=2)
# pcm_SSC_sand = self.axis_SSC_2D_field[1].pcolormesh(stg.t[int(stg.frequency_to_compute_SSC[0]), :], # pcm_SSC_sand = self.axis_SSC_2D_field[1].pcolormesh(stg.t[int(stg.frequency_to_compute_SSC[0]), :],
# -stg.r[int(stg.frequency_to_compute_SSC[0]), :], # -stg.r[int(stg.frequency_to_compute_SSC[0]), :],
@ -1062,20 +1530,35 @@ class AcousticInversionTab(QWidget):
self.canvas_SSC_sample_vs_inversion = FigureCanvas(self.figure_SSC_sample_vs_inversion) self.canvas_SSC_sample_vs_inversion = FigureCanvas(self.figure_SSC_sample_vs_inversion)
self.verticalLayout_groupbox_SSC_sample_vs_inversion.addWidget(self.canvas_SSC_sample_vs_inversion) self.verticalLayout_groupbox_SSC_sample_vs_inversion.addWidget(self.canvas_SSC_sample_vs_inversion)
if stg.ABS_name == "Aquascat 1000R": else:
self.axis_SSC_sample_vs_inversion.plot(stg.Ctot_fine, stg.SSC_fine[sample_depth_position, sample_time_position], ls=" ", marker='v', color='black', label='Fine SSC')
self.axis_SSC_sample_vs_inversion.plot(stg.Ctot_sand,
stg.SSC_sand[sample_depth_position, sample_time_position],
ls=" ", marker='x', color='black', label='Sand SSC')
self.axis_SSC_sample_vs_inversion.set_xscale('log') self.verticalLayout_groupbox_SSC_sample_vs_inversion.removeWidget(self.canvas_SSC_sample_vs_inversion)
self.axis_SSC_sample_vs_inversion.set_yscale('log')
self.axis_SSC_sample_vs_inversion.plot([0, 10], [0, 10], color='black', lw=1)
self.axis_SSC_sample_vs_inversion.set_xlabel('Measured SSC (g/l)', weight='bold')
self.axis_SSC_sample_vs_inversion.set_ylabel('Inverse SSC (g/l)', weight='bold')
self.axis_SSC_sample_vs_inversion.legend()
elif stg.ABS_name == "UB-SediFlow": print("Ctot fine : ", stg.Ctot_fine)
print("SCC fine : ", stg.SSC_fine[sample_depth_position, sample_time_position])
print("Ctot sand : ", stg.Ctot_sand)
print("SCC sand : ", stg.SSC_sand[sample_depth_position, sample_time_position])
self.figure_SSC_sample_vs_inversion, self.axis_SSC_sample_vs_inversion = plt.subplots(nrows=1, ncols=1,
layout="constrained")
self.canvas_SSC_sample_vs_inversion = FigureCanvas(self.figure_SSC_sample_vs_inversion)
self.verticalLayout_groupbox_SSC_sample_vs_inversion.addWidget(self.canvas_SSC_sample_vs_inversion)
if stg.ABS_name == "Aquascat 1000R":
self.axis_SSC_sample_vs_inversion.plot(stg.Ctot_fine, stg.SSC_fine[sample_depth_position, sample_time_position], ls=" ", marker='v', color='black', label='Fine SSC')
self.axis_SSC_sample_vs_inversion.plot(stg.Ctot_sand,
stg.SSC_sand[sample_depth_position, sample_time_position],
ls=" ", marker='x', color='black', label='Sand SSC')
self.axis_SSC_sample_vs_inversion.set_xscale('log')
self.axis_SSC_sample_vs_inversion.set_yscale('log')
self.axis_SSC_sample_vs_inversion.plot([0, 10], [0, 10], color='black', lw=1)
self.axis_SSC_sample_vs_inversion.set_xlabel('Measured SSC (g/l)', weight='bold')
self.axis_SSC_sample_vs_inversion.set_ylabel('Inverse SSC (g/l)', weight='bold')
self.axis_SSC_sample_vs_inversion.legend()
elif stg.ABS_name == "UB-SediFlow":
# self.axis_SSC_sample_vs_inversion.plot(stg.Ctot_sand, # self.axis_SSC_sample_vs_inversion.plot(stg.Ctot_sand,
# stg.SSC_sand[sample_depth_position, sample_time_position], # stg.SSC_sand[sample_depth_position, sample_time_position],
# ls=" ", marker='x', color='black', label='Sand SSC') # ls=" ", marker='x', color='black', label='Sand SSC')
@ -1091,10 +1574,14 @@ class AcousticInversionTab(QWidget):
# plt.show() # plt.show()
# self.axis_SSC_sample_vs_inversion.plot(stg.r[1, :145], stg.SSC_sand[:145, 40], color='blue', ls='solid') # self.axis_SSC_sample_vs_inversion.plot(stg.r[1, :145], stg.SSC_sand[:145, 40], color='blue', ls='solid')
self.axis_SSC_sample_vs_inversion.plot(stg.r[1, 2:145], stg.SSC_sand[2:145, 762], # self.axis_SSC_sample_vs_inversion.plot(stg.r[1, 5:152], stg.SSC_sand[5:152, 52],
color='red', ls='solid', marker='o', mec='k', mfc='k', ms=3) # color='blue', ls='solid') #, marker='o', mec='k', mfc='k', ms=3)
self.axis_SSC_sample_vs_inversion.set_xlabel('Depth (m)', weight='bold') # self.axis_SSC_sample_vs_inversion.plot(stg.r[1, 5:152], stg.SSC_sand[5:152, 766],
self.axis_SSC_sample_vs_inversion.set_ylabel('Sand concentration (g/l)', weight='bold') # color='red', ls='solid')
self.axis_SSC_sample_vs_inversion.plot(stg.r[1, 5:138], stg.SSC_sand[5:138, 777], color='red', ls='solid')
self.axis_SSC_sample_vs_inversion.set_xlabel('Depth (m)', weight='bold')
self.axis_SSC_sample_vs_inversion.set_ylabel('Sand concentration (g/l)', weight='bold')

View File

@ -1,33 +1,154 @@
from PyQt5.QtWidgets import QComboBox from PyQt5.QtWidgets import QComboBox, QStyledItemDelegate, qApp
from PyQt5.QtCore import Qt from PyQt5.QtCore import Qt, QEvent
from PyQt5.QtGui import QPalette, QStandardItem, QFontMetrics
class CheckableComboBox(QComboBox): class CheckableComboBox(QComboBox):
def __init__(self):
super().__init__()
self._changed = False
self.view().pressed.connect(self.handleItemPressed)
def setItemChecked(self, index, checked=False): # Subclass Delegate to increase item height
item = self.model().item(index, self.modelColumn()) # QStandardItem object class Delegate(QStyledItemDelegate):
if checked: def sizeHint(self, option, index):
item.setCheckState(Qt.Checked) size = super().sizeHint(option, index)
else: size.setHeight(20)
item.setCheckState(Qt.Unchecked) return size
def handleItemPressed(self, index): def __init__(self, *args, **kwargs):
item = self.model().itemFromIndex(index) super().__init__(*args, **kwargs)
if item.checkState() == Qt.Checked:
item.setCheckState(Qt.Unchecked) # Make the combo editable to set a custom text, but readonly
else: self.setEditable(True)
item.setCheckState(Qt.Checked) self.lineEdit().setReadOnly(True)
self._changed = True # Make the lineedit the same color as QPushButton
palette = qApp.palette()
palette.setBrush(QPalette.Base, palette.button())
self.lineEdit().setPalette(palette)
# Use custom delegate
self.setItemDelegate(CheckableComboBox.Delegate())
# Update the text when an item is toggled
self.model().dataChanged.connect(self.updateText)
# Hide and show popup when clicking the line edit
self.lineEdit().installEventFilter(self)
self.closeOnLineEditClick = False
# Prevent popup from closing when clicking on an item
self.view().viewport().installEventFilter(self)
def resizeEvent(self, event):
# Recompute text to elide as needed
self.updateText()
super().resizeEvent(event)
def eventFilter(self, object, event):
if object == self.lineEdit():
if event.type() == QEvent.MouseButtonRelease:
if self.closeOnLineEditClick:
self.hidePopup()
else:
self.showPopup()
return True
return False
if object == self.view().viewport():
if event.type() == QEvent.MouseButtonRelease:
index = self.view().indexAt(event.pos())
item = self.model().item(index.row())
if item.checkState() == Qt.Checked:
item.setCheckState(Qt.Unchecked)
else:
item.setCheckState(Qt.Checked)
return True
return False
def showPopup(self):
super().showPopup()
# When the popup is displayed, a click on the lineedit should close it
self.closeOnLineEditClick = True
def hidePopup(self): def hidePopup(self):
if not self._changed: super().hidePopup()
super().hidePopup() # Used to prevent immediate reopening when clicking on the lineEdit
self._changed = False self.startTimer(100)
# Refresh the display text when closing
self.updateText()
def timerEvent(self, event):
# After timeout, kill timer, and reenable click on line edit
self.killTimer(event.timerId())
self.closeOnLineEditClick = False
def updateText(self):
texts = []
for i in range(self.model().rowCount()):
if self.model().item(i).checkState() == Qt.Checked:
texts.append(self.model().item(i).text())
text = ", ".join(texts)
# Compute elided text (with "...")
metrics = QFontMetrics(self.lineEdit().font())
elidedText = metrics.elidedText(text, Qt.ElideRight, self.lineEdit().width())
self.lineEdit().setText(elidedText)
def addItem(self, text, data=None):
item = QStandardItem()
item.setText(text)
if data is None:
item.setData(text)
else:
item.setData(data)
item.setFlags(Qt.ItemIsEnabled | Qt.ItemIsUserCheckable)
item.setData(Qt.Unchecked, Qt.CheckStateRole)
self.model().appendRow(item)
def addItems(self, texts, datalist=None):
for i, text in enumerate(texts):
try:
data = datalist[i]
except (TypeError, IndexError):
data = None
self.addItem(text, data)
def currentData(self):
# Return the list of selected items data
res = []
for i in range(self.model().rowCount()):
if self.model().item(i).checkState() == Qt.Checked:
res.append(self.model().item(i).data())
return res
# class CheckableComboBox(QComboBox):
# def __init__(self):
# super().__init__()
# self._changed = False
# self.view().pressed.connect(self.handleItemPressed)
#
# def setItemChecked(self, index, checked=False):
# item = self.model().item(index, self.modelColumn()) # QStandardItem object
# if checked:
# item.setCheckState(Qt.Checked)
# else:
# item.setCheckState(Qt.Unchecked)
#
# def handleItemPressed(self, index):
# item = self.model().itemFromIndex(index)
# if item.checkState() == Qt.Checked:
# item.setCheckState(Qt.Unchecked)
# else:
# item.setCheckState(Qt.Checked)
# self._changed = True
#
# def hidePopup(self):
# if not self._changed:
# super().hidePopup()
# self._changed = False
#
# def itemChecked(self, index):
# item = self.model().item(index, self.modelColumn())
# return item.checkState() == Qt.Checked
def itemChecked(self, index):
item = self.model().item(index, self.modelColumn())
return item.checkState() == Qt.Checked

View File

@ -655,7 +655,7 @@ class SignalProcessingTab(QWidget):
# --- Fix maximum value of slider + Edit Label Profile number --- # --- Fix maximum value of slider + Edit Label Profile number ---
self.slider.setMaximum(stg.t.shape[1]) self.slider.setMaximum(stg.t.shape[1])
self.label_profile_number.clear() self.label_profile_number.clear()
self.label_profile_number.setText("Profile " + str(self.slider.value()) + " / " + str(self.slider.maximum())) self.label_profile_number.setText("Vertical " + str(self.slider.value()) + " / " + str(self.slider.maximum()))
self.plot_profile_position_on_transect() self.plot_profile_position_on_transect()
self.plot_profile() self.plot_profile()
@ -883,7 +883,7 @@ class SignalProcessingTab(QWidget):
# (* real_cell_size) pour remettre les échelles spatiales sur la taille réelle des cellules # (* real_cell_size) pour remettre les échelles spatiales sur la taille réelle des cellules
# R with right shape (numpy array) # R with right shape (numpy array)
R_real = np.repeat(real_r, len(stg.freq), axis=1) R_real = real_r # np.repeat(real_r, len(stg.freq), axis=1)
return R_real return R_real
@ -896,7 +896,10 @@ class SignalProcessingTab(QWidget):
msgBox.setStandardButtons(QMessageBox.Ok) msgBox.setStandardButtons(QMessageBox.Ok)
msgBox.exec() msgBox.exec()
else: else:
R_real = np.repeat(self.range_cells_function()[:, :, np.newaxis], stg.t.shape[0], axis=2) print(f"self.range_cells_function() : {self.range_cells_function()}")
print(f"self.range_cells_function() shape : {self.range_cells_function().shape}")
R_real = np.repeat(self.range_cells_function()[:, :, np.newaxis], stg.t.shape[1], axis=2)
print(f"R_real shape : {R_real.shape}")
if (stg.BS_stream_bed_averaged.size == 0) and (stg.BS_stream_bed_SNR_filter.size == 0): if (stg.BS_stream_bed_averaged.size == 0) and (stg.BS_stream_bed_SNR_filter.size == 0):
stg.FCB = (np.log(stg.BS_stream_bed) + np.log(R_real) + stg.FCB = (np.log(stg.BS_stream_bed) + np.log(R_real) +
2 * stg.water_attenuation * R_real) 2 * stg.water_attenuation * R_real)
@ -919,10 +922,10 @@ class SignalProcessingTab(QWidget):
msgBox.exec() msgBox.exec()
else: else:
try: try:
y0 = stg.FCB[:, self.combobox_frequency_compute_alphaS.currentIndex(), self.slider.value()] y0 = stg.FCB[self.combobox_frequency_compute_alphaS.currentIndex(), :, self.slider.value()]
y = y0[np.where(np.isnan(y0) == False)] y = y0[np.where(np.isnan(y0) == False)]
x0 = stg.r.reshape(-1) x0 = stg.r[0, :].reshape(-1)
x = x0[np.where(np.isnan(y0) == False)] x = x0[np.where(np.isnan(y0) == False)]
value1 = np.where(np.round(np.abs(x - self.spinbox_alphaS_computation_from.value()), 2) value1 = np.where(np.round(np.abs(x - self.spinbox_alphaS_computation_from.value()), 2)
@ -1040,7 +1043,7 @@ class SignalProcessingTab(QWidget):
# --- Update label "Profile N / max(N)" --- # --- Update label "Profile N / max(N)" ---
self.label_profile_number.clear() self.label_profile_number.clear()
self.label_profile_number.setText("Profile " + str(self.slider.value()) + " / " + str(self.slider.maximum())) self.label_profile_number.setText("Vertical " + str(self.slider.value()) + " / " + str(self.slider.maximum()))
# --- Update transect plot --- # --- Update transect plot ---
@ -1411,7 +1414,7 @@ class SignalProcessingTab(QWidget):
self.axis_FCB_profile[f].cla() self.axis_FCB_profile[f].cla()
self.axis_FCB_profile[f].plot(stg.r, stg.FCB[:, f, self.slider.value()], linestyle="solid", linewidth=1, color="k") self.axis_FCB_profile[f].plot(stg.r[f, :], stg.FCB[f, :, self.slider.value()], linestyle="solid", linewidth=1, color="k")
# self.axis_FCB_profile[f].set_ylim(np.max(stg.r), np.min(stg.r)) # self.axis_FCB_profile[f].set_ylim(np.max(stg.r), np.min(stg.r))
self.axis_FCB_profile[f].text(.95, .05, stg.freq_text[f], self.axis_FCB_profile[f].text(.95, .05, stg.freq_text[f],
@ -1422,7 +1425,7 @@ class SignalProcessingTab(QWidget):
if len(stg.lin_reg) != 0: if len(stg.lin_reg) != 0:
self.axis_FCB_profile[self.combobox_frequency_compute_alphaS.currentIndex()]. \ self.axis_FCB_profile[self.combobox_frequency_compute_alphaS.currentIndex()]. \
plot(stg.r, stg.lin_reg[0]*stg.r + stg.lin_reg[1], linestyle="dashed", linewidth=1, color="b") plot(stg.r[f, :], stg.lin_reg[0]*stg.r[f, :] + stg.lin_reg[1], linestyle="dashed", linewidth=1, color="b")
self.figure_FCB_profile.supylabel("FCB") self.figure_FCB_profile.supylabel("FCB")
self.figure_FCB_profile.supxlabel("Depth (m)") self.figure_FCB_profile.supxlabel("Depth (m)")
@ -1436,7 +1439,7 @@ class SignalProcessingTab(QWidget):
self.axis_FCB_profile[f].cla() self.axis_FCB_profile[f].cla()
self.axis_FCB_profile[f].plot(stg.r, stg.FCB[:, f, self.slider.value()], linestyle="solid", linewidth=1, color="k") self.axis_FCB_profile[f].plot(stg.r[f, :], stg.FCB[f, :, self.slider.value()], linestyle="solid", linewidth=1, color="k")
# self.axis_FCB_profile[f].set_ylim(-np.max(stg.r), np.min(stg.r)) # self.axis_FCB_profile[f].set_ylim(-np.max(stg.r), np.min(stg.r))

View File

@ -13,7 +13,7 @@ from View.note_tab import NoteTab
from View.user_manual_tab import UserManualTab from View.user_manual_tab import UserManualTab
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
plt.close("all") # plt.close("all")
# Check encoding used # Check encoding used
# print(sys.getdefaultencoding()) # print(sys.getdefaultencoding())
@ -35,7 +35,6 @@ class MainApplication(QMainWindow):
width = size.width() width = size.width()
height = size.height() height = size.height()
self.resize(int(PERCENT_SCREEN_SIZE*width), int(PERCENT_SCREEN_SIZE*height)) self.resize(int(PERCENT_SCREEN_SIZE*width), int(PERCENT_SCREEN_SIZE*height))
try: try:
# ************************************************** # **************************************************
@ -50,7 +49,7 @@ class MainApplication(QMainWindow):
self.signal_processing_tab = SignalProcessingTab(self.ui_mainwindow.tab2) self.signal_processing_tab = SignalProcessingTab(self.ui_mainwindow.tab2)
# ************************************************** # **************************************************.
# --------------- Sample data tab ---------------- # --------------- Sample data tab ----------------
self.sample_data_tab = SampleDataTab(self.ui_mainwindow.tab3) self.sample_data_tab = SampleDataTab(self.ui_mainwindow.tab3)