Measurements Information group box has been standardized between Aquascat and UBSediflow: the same characteristics are used and value are displayed according to the frequency. Note that the modifications have been made for delete and clear data (but not yet finished).
parent
e08d769f79
commit
b881cd7312
File diff suppressed because it is too large
Load Diff
|
|
@ -5,8 +5,7 @@ import pandas as pd
|
|||
import matplotlib.pyplot as plt
|
||||
from matplotlib.colors import LogNorm
|
||||
|
||||
# path_BS_raw_data = "/home/bmoudjed/Documents/3 SSC acoustic meas project/Graphical interface project/" \
|
||||
# "Data/Acoustic_data/20180107123500.aqa"
|
||||
# path_BS_raw_data = "/home/bmoudjed/Documents/2 Data/Confluence_Rhône_Isere_2018/Acoustic_data/20180107123500.aqa"
|
||||
# path_BS_raw_data = "/home/bmoudjed/Documents/3 SSC acoustic meas project/Graphical interface project/" \
|
||||
# "Data/AcousticNoise_data/20180107121600.aqa"
|
||||
|
||||
|
|
@ -16,11 +15,11 @@ class AcousticDataLoader:
|
|||
def __init__(self, path_BS_raw_data: str):
|
||||
|
||||
self.path_BS_raw_data = path_BS_raw_data
|
||||
|
||||
print(self.path_BS_raw_data)
|
||||
# --- Load Backscatter acoustic raw data with RawAquascatData class ---
|
||||
|
||||
self._data_BS = RawAquascatData(self.path_BS_raw_data)
|
||||
|
||||
print(self._data_BS.V.shape)
|
||||
self._BS_raw_data = np.swapaxes(self._data_BS.V, 0, 1)
|
||||
print(f"BS raw data shape = {self._BS_raw_data.shape}")
|
||||
|
||||
|
|
@ -38,19 +37,19 @@ class AcousticDataLoader:
|
|||
|
||||
self._date = self._data_BS.date.date()
|
||||
self._hour = self._data_BS.date.time()
|
||||
self._nb_profiles = self._data_BS.NumProfiles
|
||||
self._nb_profiles_per_sec = self._data_BS.ProfileRate
|
||||
self._nb_cells = self._data_BS.NumCells
|
||||
self._cell_size = self._data_BS.cellSize
|
||||
self._pulse_length = self._data_BS.TxPulseLength
|
||||
self._nb_pings_per_sec = self._data_BS.PingRate
|
||||
self._nb_pings_averaged_per_profile = self._data_BS.Average
|
||||
self._kt = self._data_BS.Kt
|
||||
self._gain_rx = self._data_BS.RxGain
|
||||
self._gain_tx = self._data_BS.TxGain
|
||||
self._nb_profiles = [self._data_BS.NumProfiles]*self._freq.shape[0]
|
||||
self._nb_profiles_per_sec = [self._data_BS.ProfileRate]*self._freq.shape[0]
|
||||
self._nb_cells = [self._data_BS.NumCells]*self._freq.shape[0]
|
||||
self._cell_size = [self._data_BS.cellSize]*self._freq.shape[0]
|
||||
self._pulse_length = [self._data_BS.TxPulseLength]*self._freq.shape[0]
|
||||
self._nb_pings_per_sec = [self._data_BS.PingRate]*self._freq.shape[0]
|
||||
self._nb_pings_averaged_per_profile = [self._data_BS.Average]*self._freq.shape[0]
|
||||
self._kt = self._data_BS.Kt.tolist()
|
||||
self._gain_rx = self._data_BS.RxGain.tolist()
|
||||
self._gain_tx = self._data_BS.TxGain.tolist()
|
||||
|
||||
print(self._r[0, :][1] - self._r[1, :][0])
|
||||
print(self._kt)
|
||||
# print(self._r[0, :][1] - self._r[1, :][0])
|
||||
# print(type(self._nb_cells), self._nb_cells)
|
||||
|
||||
# self._snr = np.array([])
|
||||
# self._snr_reshape = np.array([])
|
||||
|
|
|
|||
|
|
@ -32,7 +32,7 @@ from Model.udt_extract.raw_extract import raw_extract
|
|||
# path_BS_raw_data0 = ("/home/bmoudjed/Documents/3 SSC acoustic meas project/Graphical interface project/Data/Raw_data_udt/")
|
||||
# filename0 = "raw_20210519_130643.udt"
|
||||
|
||||
# path_BS_raw_data0 = ("/home/bmoudjed/Documents/3 SSC acoustic meas project/Graphical interface project/Data/Raw_data_udt/")
|
||||
# path_BS_raw_data0 = ("/home/bmoudjed/Documents/2 Data/APAVER_2021/Raw_data_udt/")
|
||||
# filename0 = "raw_20210520_085958.udt"
|
||||
|
||||
# filename = "raw_20210519_115128.udt"
|
||||
|
|
@ -54,23 +54,36 @@ class AcousticDataLoaderUBSediFlow:
|
|||
= raw_extract(self.path_BS_raw_data)
|
||||
|
||||
print(f"device_name : {device_name}")
|
||||
print(f"time_begin : {time_begin}")
|
||||
print(f"date begin : {time_begin.date()}")
|
||||
print(f"time begin : {time_begin.time()}")
|
||||
print(f"settings_dict : {settings_dict}")
|
||||
|
||||
# --- Date and Hour of measurements read on udt data file ---
|
||||
filename = self.path_BS_raw_data[-23:]
|
||||
date_and_time = datetime.datetime(year=int(filename[4:8]),
|
||||
month=int(filename[8:10]),
|
||||
day=int(filename[10:12]),
|
||||
hour=int(filename[13:15]),
|
||||
minute=int(filename[15:17]),
|
||||
second=int(filename[17:19]))
|
||||
self._date = date_and_time.date()
|
||||
# # --- Date and Hour of measurements read on udt data file ---
|
||||
# filename = self.path_BS_raw_data[-23:]
|
||||
# date_and_time = datetime.datetime(year=int(filename[4:8]),
|
||||
# month=int(filename[8:10]),
|
||||
# day=int(filename[10:12]),
|
||||
# hour=int(filename[13:15]),
|
||||
# minute=int(filename[15:17]),
|
||||
# second=int(filename[17:19]))
|
||||
self._date = time_begin.date()
|
||||
print(f"date : {self._date}")
|
||||
self._hour = date_and_time.time()
|
||||
self._hour = time_begin.time()
|
||||
print(f"time : {self._hour}")
|
||||
|
||||
self._freq = np.array([[]])
|
||||
|
||||
self._nb_profiles = []
|
||||
self._nb_profiles_per_sec = []
|
||||
self._nb_cells = []
|
||||
self._cell_size = []
|
||||
self._pulse_length = []
|
||||
self._nb_pings_per_sec = []
|
||||
self._nb_pings_averaged_per_profile = []
|
||||
self._kt = []
|
||||
self._gain_rx = []
|
||||
self._gain_tx = []
|
||||
|
||||
self._r = np.array([[]])
|
||||
self._time = np.array([[]])
|
||||
self._time_snr = np.array([[]])
|
||||
|
|
@ -78,18 +91,29 @@ class AcousticDataLoaderUBSediFlow:
|
|||
# self._SNR_data = np.array([[[]]])
|
||||
time_len = []
|
||||
time_snr_len = []
|
||||
|
||||
for config in param_us_dicts.keys():
|
||||
# print("-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x")
|
||||
# print(f"config : {config} \n")
|
||||
for channel in param_us_dicts[config].keys():
|
||||
print("-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x-x")
|
||||
# print(f"channel : {channel} \n")
|
||||
print(param_us_dicts[config][channel])
|
||||
# print("param_us_dicts[config][channel] ", param_us_dicts[config][channel])
|
||||
# print("param_us_dicts ", param_us_dicts)
|
||||
# print(data_us_dicts[config][channel]['echo_avg_profile'])
|
||||
|
||||
# --- Frequencies ---
|
||||
self._freq = np.append(self._freq, param_us_dicts[config][channel]['f0'])
|
||||
|
||||
self._nb_cells = np.append(self._nb_cells, param_us_dicts[config][channel]['n_cell'])
|
||||
self._cell_size = np.append(self._cell_size, param_us_dicts[config][channel]['r_dcell'])
|
||||
self._pulse_length = np.append(self._pulse_length, 0)
|
||||
self._nb_pings_per_sec = np.append(self._nb_pings_per_sec, param_us_dicts[config][channel]['prf'])
|
||||
self._nb_pings_averaged_per_profile = np.append(self._nb_pings_averaged_per_profile, param_us_dicts[config][channel]['n_p'])
|
||||
self._kt = np.append(self._kt, 0)
|
||||
self._gain_rx = np.append(self._gain_rx, param_us_dicts[config][channel]['a0'])
|
||||
self._gain_tx = np.append(self._gain_tx, param_us_dicts[config][channel]['a1'])
|
||||
|
||||
# --- Depth for each frequencies ---
|
||||
print("r_dcell : ", param_us_dicts[config][channel]['r_dcell'])
|
||||
print("n_cell : ", param_us_dicts[config][channel]['n_cell'])
|
||||
|
|
@ -145,6 +169,10 @@ class AcousticDataLoaderUBSediFlow:
|
|||
self._time = np.append(self._time, time, axis=0)
|
||||
print(f"self._time.shape {self._time.shape}")
|
||||
|
||||
self._nb_profiles = np.append(self._nb_profiles, self._time.shape[1])
|
||||
self._nb_profiles_per_sec = np.append(self._nb_profiles_per_sec,
|
||||
param_us_dicts[config][channel]['n_avg'])
|
||||
|
||||
# --- SNR Time for each frequencies ---
|
||||
# time_snr = [[(t - data_us_dicts[config][channel]['snr_doppler_avg_profile']['time'][0]).total_seconds()
|
||||
# for t in data_us_dicts[config][channel]['snr_doppler_avg_profile']['time']]]
|
||||
|
|
@ -600,7 +628,7 @@ class AcousticDataLoaderUBSediFlow:
|
|||
# fig.colorbar(pcm, ax=ax, shrink=1, location='right')
|
||||
# plt.show()
|
||||
|
||||
def reshape_BS_raw_cross_section(self):
|
||||
def reshape_BS_raw_data(self):
|
||||
BS_raw_cross_section = np.reshape(self._BS_raw_data,
|
||||
(self._r.shape[1]*self._time.shape[1], len(self._freq)),
|
||||
order="F")
|
||||
|
|
|
|||
File diff suppressed because it is too large
Load Diff
|
|
@ -61,13 +61,14 @@ BS_stream_bed = [] # BS_data_section = BS data in the section. Values NaN o
|
|||
BS_noise_cross_section = np.array([]) # BS_noise_cros_section = BS_noise_data[:, :, tmin:tmax] (former Noise_data)
|
||||
SNR_cross_section = np.array([]) # SNR_data = snr[:, :, tmin:tmax]
|
||||
SNR_stream_bed = np.array([])
|
||||
t_cross_section = []
|
||||
time_cross_section = []
|
||||
t_snr = np.array([])
|
||||
depth_cross_section = []
|
||||
depth_bottom = []
|
||||
val_bottom = []
|
||||
ind_bottom = []
|
||||
freq_bottom_detection = []
|
||||
depth_bottom_detection_1st_int_area = []
|
||||
|
||||
# --- Processed data in Signal Processing Tab ---
|
||||
# BS_cross_section_SNR_filter = np.array([[[]]]) # BS data filtered with SNR values (remove point if SNR < value) - bottom is not detected
|
||||
|
|
@ -164,6 +165,8 @@ filename_save_as = ""
|
|||
dirname_open = ""
|
||||
filename_open = ""
|
||||
|
||||
read_table_trigger = 0
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
|
|||
Loading…
Reference in New Issue