Inversion: Refactoring 'save_result_in_excel_file' method.
parent
12fea4e182
commit
ba0557294e
|
|
@ -20,16 +20,11 @@
|
|||
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
|
||||
import pandas as pd
|
||||
from PyQt5.QtWidgets import (QWidget, QVBoxLayout, QHBoxLayout, QGroupBox, QComboBox,
|
||||
QLabel, QPushButton, QSpacerItem,
|
||||
QSlider, QLineEdit, QMessageBox, QFileDialog)
|
||||
|
||||
from PyQt5.QtCore import QCoreApplication, Qt
|
||||
from PyQt5.QtGui import QIcon, QPixmap
|
||||
|
||||
import os
|
||||
import numpy as np
|
||||
import pandas as pd
|
||||
|
||||
from copy import deepcopy
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
|
@ -37,9 +32,14 @@ from matplotlib.colors import LogNorm
|
|||
from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
|
||||
from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolBar
|
||||
|
||||
from os import chdir
|
||||
from PyQt5.QtWidgets import (
|
||||
QWidget, QVBoxLayout, QHBoxLayout, QGroupBox, QComboBox,
|
||||
QLabel, QPushButton, QSpacerItem, QSlider, QLineEdit,
|
||||
QMessageBox, QFileDialog
|
||||
)
|
||||
|
||||
from copy import deepcopy
|
||||
from PyQt5.QtCore import QCoreApplication, Qt
|
||||
from PyQt5.QtGui import QIcon, QPixmap
|
||||
|
||||
from View.checkable_combobox import CheckableComboBox
|
||||
|
||||
|
|
@ -1671,96 +1671,73 @@ class AcousticInversionTab(QWidget):
|
|||
self.figure_measured_vs_inverted_sand.canvas.draw_idle()
|
||||
|
||||
def save_result_in_excel_file(self):
|
||||
|
||||
if self.combobox_acoustic_data_choice.count() > 0:
|
||||
|
||||
name = QFileDialog.getSaveFileName(
|
||||
caption="Save As - Inversion results", directory="", filter="Excel Files (*.xlsx)",
|
||||
options=QFileDialog.DontUseNativeDialog)
|
||||
caption="Save As - Inversion results",
|
||||
directory="",
|
||||
filter="Excel Files (*.xlsx)",
|
||||
options=QFileDialog.DontUseNativeDialog
|
||||
)
|
||||
|
||||
if name[0]:
|
||||
dirname = "/".join(name[0].split("/")[:-1]) + "/"
|
||||
filename = name[0].split("/")[-1]
|
||||
chdir(dirname)
|
||||
dirname = os.path.dirname(name[0])
|
||||
filename = os.path.basename(name[0])
|
||||
os.chdir(dirname)
|
||||
|
||||
results = []
|
||||
|
||||
for k in range(self.combobox_acoustic_data_choice.count()):
|
||||
|
||||
if stg.time_cross_section[k].shape != (0,):
|
||||
time_data = stg.time_cross_section
|
||||
else:
|
||||
time_data = stg.time
|
||||
|
||||
if stg.depth_cross_section[k].shape != (0,):
|
||||
|
||||
t = np.repeat(stg.time_cross_section[k][stg.frequency_for_inversion[1]],
|
||||
stg.depth_cross_section[k].shape[1])
|
||||
|
||||
r = np.zeros((stg.depth_cross_section[k].shape[1] *stg.time_cross_section[k].shape[1],1))
|
||||
|
||||
for i in range(stg.time_cross_section[k].shape[1]):
|
||||
for j in range(stg.depth_cross_section[k].shape[1]):
|
||||
r[i * stg.depth_cross_section[k].shape[1] + j] = (
|
||||
stg.depth_cross_section[k][int(stg.frequency_for_inversion[1]), j])
|
||||
|
||||
if stg.SSC_fine[k].shape == (0,):
|
||||
stg.SSC_fine[k] = np.zeros(r.shape[0])
|
||||
if stg.SSC_sand[k].shape == (0,):
|
||||
stg.SSC_sand[k] = np.zeros(r.shape[0])
|
||||
|
||||
depth_data = stg.depth_cross_section
|
||||
else:
|
||||
depth_data = stg.depth
|
||||
|
||||
t = np.repeat(stg.time_cross_section[k][stg.frequency_for_inversion[1]], stg.depth[k].shape[1])
|
||||
|
||||
r = np.zeros((stg.depth[k].shape[1] * stg.time_cross_section[k].shape[1], 1))
|
||||
for i in range(stg.time_cross_section[k].shape[1]):
|
||||
for j in range(stg.depth[k].shape[1]):
|
||||
r[i * stg.depth[k].shape[1] + j] = (
|
||||
stg.depth[k][int(stg.frequency_for_inversion[1]), j])
|
||||
t = np.repeat(
|
||||
time_data[k][stg.frequency_for_inversion[1]],
|
||||
depth_data[k].shape[1]
|
||||
)
|
||||
|
||||
r = np.zeros((
|
||||
depth_data[k].shape[1] * time_data[k].shape[1], 1
|
||||
))
|
||||
|
||||
for i in range(time_data[k].shape[1]):
|
||||
for j in range(depth_data[k].shape[1]):
|
||||
r_id = i * depth_data[k].shape[1] + j
|
||||
|
||||
r[r_id] = (
|
||||
depth_data[k][
|
||||
int(stg.frequency_for_inversion[1]), j
|
||||
]
|
||||
)
|
||||
|
||||
if stg.SSC_fine[k].shape == (0,):
|
||||
stg.SSC_fine[k] = np.zeros(r.shape[0])
|
||||
if stg.SSC_sand[k].shape == (0,):
|
||||
stg.SSC_sand[k] = np.zeros(r.shape[0])
|
||||
|
||||
else:
|
||||
results.append(
|
||||
pd.DataFrame(
|
||||
{
|
||||
'Time (sec)': t, 'Depth (m)': r,
|
||||
'SSC_fine (g/L)': stg.SSC_fine[k].reshape(t.shape[0]),
|
||||
'SSC_sand (g/L)': stg.SSC_sand[k].reshape(t.shape[0]),
|
||||
}
|
||||
)
|
||||
)
|
||||
|
||||
if stg.depth_cross_section[k].shape != (0,):
|
||||
|
||||
t = np.repeat(stg.time[k][stg.frequency_for_inversion[1]], stg.depth_cross_section[k].shape[1])
|
||||
|
||||
r = np.zeros((stg.depth_cross_section[k].shape[1] * stg.time[k].shape[1], 1))
|
||||
for i in range(stg.time[k].shape[1]):
|
||||
for j in range(stg.depth_cross_section[k].shape[1]):
|
||||
r[i * stg.depth_cross_section[k].shape[1] + j] = (
|
||||
stg.depth_cross_section[k][int(stg.frequency_for_inversion[1]), j])
|
||||
|
||||
if stg.SSC_fine[k].shape == (0,):
|
||||
stg.SSC_fine[k] = np.zeros(r.shape[0])
|
||||
if stg.SSC_sand[k].shape == (0,):
|
||||
stg.SSC_sand[k] = np.zeros(r.shape[0])
|
||||
|
||||
else:
|
||||
|
||||
t = np.repeat(stg.time[k][stg.frequency_for_inversion[1]], stg.depth[k].shape[1])
|
||||
|
||||
r = np.zeros(stg.depth[k].shape[1] * stg.time[k].shape[1])
|
||||
|
||||
for i in range(stg.time[k].shape[1]):
|
||||
for j in range(stg.depth[k].shape[1]):
|
||||
r[i * stg.depth[k].shape[1] + j] = (
|
||||
stg.depth[k][int(stg.frequency_for_inversion[1]), j])
|
||||
|
||||
if stg.SSC_fine[k].shape == (0,):
|
||||
stg.SSC_fine[k] = np.zeros(r.shape[0])
|
||||
if stg.SSC_sand[k].shape == (0,):
|
||||
stg.SSC_sand[k] = np.zeros(r.shape[0])
|
||||
|
||||
exec("result_" + str(k) + "= pd.DataFrame({'Time (sec)': t," +
|
||||
"'Depth (m)': r," +
|
||||
"'SSC_fine (g/L)': stg.SSC_fine[" + str(k) + "].reshape(t.shape[0])," +
|
||||
"'SSC_sand (g/L)': stg.SSC_sand[" + str(k) + "].reshape(t.shape[0])})")
|
||||
|
||||
|
||||
|
||||
with pd.ExcelWriter(dirname + filename + '.xlsx') as writer:
|
||||
with pd.ExcelWriter(
|
||||
os.path.join(dirname, filename + '.xlsx')
|
||||
) as writer:
|
||||
for k in range(self.combobox_acoustic_data_choice.count()):
|
||||
eval("result_" + str(k) + ".to_excel(writer, index=False, " +
|
||||
"engine='xlsxwriter', na_rep='NA', " +
|
||||
"sheet_name=stg.data_preprocessed[" + str(k) + "])")
|
||||
results[k].to_excel(
|
||||
writer, index=False,
|
||||
engine='xlsxwriter', na_rep='NA',
|
||||
sheet_name=stg.data_preprocessed[k],
|
||||
)
|
||||
|
|
|
|||
Loading…
Reference in New Issue