Exceptions for download file are added. Exceptions for FCB are added. Exception for computing averaged backscatter signal is added (enter an odd number)

dev-brahim
brahim 2023-09-20 11:03:47 +02:00
parent e8438ec46b
commit cd33f9d85c
2 changed files with 122 additions and 73 deletions

View File

@ -357,23 +357,42 @@ class SampleDataTab(QWidget):
filename_fine_sediment = QFileDialog.getOpenFileName(self, "Open file",
"/home/bmoudjed/Documents/3 SSC acoustic meas project/Graphical interface project/Data/Granulo_data",
"Fine sediment file (*.xls, *.ods)")
stg.fine_sediment_path = path.dirname(filename_fine_sediment[0])
stg.fine_sediment_filename = path.basename(filename_fine_sediment[0])
self.load_fine_sediment_data()
self.lineEdit_fine_sediment.setText(stg.fine_sediment_filename)
self.lineEdit_fine_sediment.setToolTip(stg.fine_sediment_path)
try:
stg.fine_sediment_path = path.dirname(filename_fine_sediment[0])
stg.fine_sediment_filename = path.basename(filename_fine_sediment[0])
self.load_fine_sediment_data()
except IsADirectoryError:
msgBox = QMessageBox()
msgBox.setWindowTitle("Download Error")
msgBox.setIcon(QMessageBox.Warning)
msgBox.setText("Please select a file")
msgBox.setStandardButtons(QMessageBox.Ok)
msgBox.exec()
else:
self.lineEdit_fine_sediment.setText(stg.fine_sediment_filename)
self.lineEdit_fine_sediment.setToolTip(stg.fine_sediment_path)
# --- Function to select directory and file name of sand sediments sample data ---
def open_dialog_box_sand_sediment(self):
filename_sand_sediment = QFileDialog.getOpenFileName(self, "Open file",
"/home/bmoudjed/Documents/3 SSC acoustic meas project/Graphical interface project/Data/Granulo_data",
"Sand sediment file (*.xls, *.ods)")
stg.sand_sediment_path = path.dirname(filename_sand_sediment[0])
stg.sand_sediment_filename = path.basename(filename_sand_sediment[0])
self.load_sand_sediment_data()
self.lineEdit_sand.setText(stg.sand_sediment_filename)
self.lineEdit_sand.setToolTip(stg.sand_sediment_path)
try:
stg.sand_sediment_path = path.dirname(filename_sand_sediment[0])
stg.sand_sediment_filename = path.basename(filename_sand_sediment[0])
self.load_sand_sediment_data()
except IsADirectoryError:
msgBox = QMessageBox()
msgBox.setWindowTitle("Download Error")
msgBox.setIcon(QMessageBox.Warning)
msgBox.setText("Please select a file")
msgBox.setStandardButtons(QMessageBox.Ok)
msgBox.exec()
else:
self.lineEdit_sand.setText(stg.sand_sediment_filename)
self.lineEdit_sand.setToolTip(stg.sand_sediment_path)
def load_fine_sediment_data(self):
fine_granulo_data = GranuloLoader(stg.fine_sediment_path + "/" + stg.fine_sediment_filename)

View File

@ -331,7 +331,7 @@ class SignalProcessingTab(QWidget):
self.gridLayout_groupbox_fit_regression.addWidget(self.pushbutton_plot_FCB, 2, 0, 1, 1)
self.pushbutton_plot_FCB.clicked.connect(self.compute_FCB)
self.pushbutton_plot_FCB.clicked.connect(self.plot_FCB)
# self.pushbutton_plot_FCB.clicked.connect(self.plot_FCB)
self.pushbutton_fit_linear_regression = QPushButton()
self.pushbutton_fit_linear_regression.setText("Fit && Compute \u03B1s")
@ -672,24 +672,32 @@ class SignalProcessingTab(QWidget):
msgBox.setStandardButtons(QMessageBox.Ok)
msgBox.exec()
else:
filter_convolve = np.ones(self.spinbox_average_horizontal.value())
if self.spinbox_average_horizontal.value() % 2 == 0:
msgBox = QMessageBox()
msgBox.setWindowTitle("Average Backscatter signal Error")
msgBox.setIcon(QMessageBox.Warning)
msgBox.setText("Please enter an odd number")
msgBox.setStandardButtons(QMessageBox.Ok)
msgBox.exec()
else:
filter_convolve = np.ones(self.spinbox_average_horizontal.value())
stg.BS_data_section_averaged = np.zeros((stg.r.shape[0], stg.freq.shape[0], stg.t.shape[0]))
for f in range(stg.freq.shape[0]):
for i in range(stg.r.shape[0]):
stg.BS_data_section_averaged[i, f, :] \
= convolve1d(stg.BS_data_section[i, f, :], weights=filter_convolve) / filter_convolve.shape[0]
stg.BS_data_section_averaged = np.zeros((stg.r.shape[0], stg.freq.shape[0], stg.t.shape[0]))
for f in range(stg.freq.shape[0]):
for i in range(stg.r.shape[0]):
stg.BS_data_section_averaged[i, f, :] \
= convolve1d(stg.BS_data_section[i, f, :], weights=filter_convolve) / filter_convolve.shape[0]
self.label_cells_horizontal.clear()
self.label_cells_horizontal.setText(
"cells = +/- " + str((self.spinbox_average_horizontal.value() // 2)*(1/stg.nb_profiles_per_sec)) + " sec")
self.label_cells_horizontal.clear()
self.label_cells_horizontal.setText(
"cells = +/- " + str((self.spinbox_average_horizontal.value() // 2)*(1/stg.nb_profiles_per_sec)) + " sec")
# self.label_cells_vertical.clear()
# self.label_cells_vertical.setText(
# "cells = +/- " + str((self.spinbox_average_vertical.value() // 2) * (1 / stg.nb_profiles_per_sec)) + " sec")
# self.label_cells_vertical.clear()
# self.label_cells_vertical.setText(
# "cells = +/- " + str((self.spinbox_average_vertical.value() // 2) * (1 / stg.nb_profiles_per_sec)) + " sec")
self.plot_averaged_profile()
self.update_plot_profile_position_on_transect()
self.plot_averaged_profile()
self.update_plot_profile_position_on_transect()
# ---------------------------------------- Connect Groupbox filter with SNR ----------------------------------------
@ -790,68 +798,90 @@ class SignalProcessingTab(QWidget):
return R_real
def compute_FCB(self):
R_real = np.repeat(self.range_cells_function()[:, :, np.newaxis], stg.t.shape[0], axis=2)
if (stg.BS_data_section_averaged.size == 0) and (stg.BS_data_section_SNR_filter.size == 0):
stg.FCB = (np.log(stg.BS_data_section) + np.log(R_real) +
2 * stg.water_attenuation * R_real)
elif stg.BS_data_section_SNR_filter.size == 0:
stg.FCB = (np.log(stg.BS_data_section_averaged) + np.log(R_real) +
2 * stg.water_attenuation * R_real)
if stg.BS_data_section.size == 0:
msgBox = QMessageBox()
msgBox.setWindowTitle("FCB Error")
msgBox.setIcon(QMessageBox.Warning)
msgBox.setText("Load Backscatter data from acoustic data tab and compute water attenuation")
msgBox.setStandardButtons(QMessageBox.Ok)
msgBox.exec()
else:
stg.FCB = (np.log(stg.BS_data_section_SNR_filter) + np.log(R_real) +
2 * stg.water_attenuation * R_real)
R_real = np.repeat(self.range_cells_function()[:, :, np.newaxis], stg.t.shape[0], axis=2)
if (stg.BS_data_section_averaged.size == 0) and (stg.BS_data_section_SNR_filter.size == 0):
stg.FCB = (np.log(stg.BS_data_section) + np.log(R_real) +
2 * stg.water_attenuation * R_real)
elif stg.BS_data_section_SNR_filter.size == 0:
stg.FCB = (np.log(stg.BS_data_section_averaged) + np.log(R_real) +
2 * stg.water_attenuation * R_real)
else:
stg.FCB = (np.log(stg.BS_data_section_SNR_filter) + np.log(R_real) +
2 * stg.water_attenuation * R_real)
self.plot_FCB()
def fit_FCB_profile_with_linear_regression_and_compute_alphaS(self):
y0 = stg.FCB[:, self.combobox_frequency_compute_alphaS.currentIndex(), self.slider.value()]
y = y0[np.where(np.isnan(y0) == False)]
print("y : ", y)
if stg.FCB.size == 0:
msgBox = QMessageBox()
msgBox.setWindowTitle("Linear regression error")
msgBox.setIcon(QMessageBox.Warning)
msgBox.setText("Please compute FCB before")
msgBox.setStandardButtons(QMessageBox.Ok)
msgBox.exec()
else:
try:
y0 = stg.FCB[:, self.combobox_frequency_compute_alphaS.currentIndex(), self.slider.value()]
y = y0[np.where(np.isnan(y0) == False)]
x0 = stg.r.reshape(-1)
x = x0[np.where(np.isnan(y0) == False)]
x0 = stg.r.reshape(-1)
x = x0[np.where(np.isnan(y0) == False)]
value1 = np.where(np.round(np.abs(x - self.spinbox_alphaS_computation_from.value()), 2)
== np.min(np.round(np.abs(x - self.spinbox_alphaS_computation_from.value()), 2)))
value2 = np.where(np.round(np.abs(x - self.spinbox_alphaS_computation_to.value()), 2)
== np.min(np.round(np.abs(x - self.spinbox_alphaS_computation_to.value()), 2)))
value1 = np.where(np.round(np.abs(x - self.spinbox_alphaS_computation_from.value()), 2)
== np.min(np.round(np.abs(x - self.spinbox_alphaS_computation_from.value()), 2)))
value2 = np.where(np.round(np.abs(x - self.spinbox_alphaS_computation_to.value()), 2)
== np.min(np.round(np.abs(x - self.spinbox_alphaS_computation_to.value()), 2)))
print(np.round(np.abs(x - self.spinbox_alphaS_computation_from.value()), 2))
print("value1 ", value1[0][0])
print(np.round(np.abs(x - self.spinbox_alphaS_computation_to.value()), 2))
print("value2 ", value2[0][0])
# print(np.round(np.abs(x - self.spinbox_alphaS_computation_from.value()), 2))
# # print("value1 ", value1[0][0])
# print(np.round(np.abs(x - self.spinbox_alphaS_computation_to.value()), 2))
# print("value2 ", value2[0][0])
print("y limited ", y[value1[0][0]:value2[0][0]])
# print("y limited ", y[value1[0][0]:value2[0][0]])
# y = stg.FCB[value1:value2, self.combobox_frequency_compute_alphaS.currentIndex(), self.slider.value()]
# print("y : ", y)
lin_reg_compute = stats.linregress(x[value1[0][0]:value2[0][0]], y[value1[0][0]:value2[0][0]])
except ValueError:
msgBox = QMessageBox()
msgBox.setWindowTitle("Linear regression error")
msgBox.setIcon(QMessageBox.Warning)
msgBox.setText("Please check boundaries to fit a linear line")
msgBox.setStandardButtons(QMessageBox.Ok)
msgBox.exec()
else:
stg.lin_reg = (lin_reg_compute.slope, lin_reg_compute.intercept)
# print(f"y = {stg.lin_reg[0]}x + {stg.lin_reg[1]}")
lin_reg_compute = stats.linregress(x[value1[0][0]:value2[0][0]], y[value1[0][0]:value2[0][0]])
stg.lin_reg = (lin_reg_compute.slope, lin_reg_compute.intercept)
print(f"y = {stg.lin_reg[0]}x + {stg.lin_reg[1]}")
self.label_alphaS.clear()
self.label_alphaS.setText(f"\u03B1s = {-0.5*stg.lin_reg[0]:.4f} dB/m")
self.label_alphaS.clear()
self.label_alphaS.setText(f"\u03B1s = {-0.5*stg.lin_reg[0]:.4f} dB/m")
# for i, value_freq in enumerate(stg.freq):
# for k, value_t in enumerate(stg.t):
# # print(f"indice i: {i}, indice k: {k}")
# # print(f"values of FCB: {stg.FCB[:, i, k]}")
# y = stg.FCB[:, i, k]
# # print("y : ", y)
# # print(f"values of FCB where FCB is not Nan {y[np.where(np.isnan(y) == False)]}")
# # print(f"values of r where FCB is not Nan {x[np.where(np.isnan(y) == False)]}")
# lin_reg_compute = stats.linregress(x[np.where(np.isnan(y) == False)], y[np.where(np.isnan(y) == False)])
# lin_reg_tuple = (lin_reg_compute.slope, lin_reg_compute.intercept)
# stg.lin_reg.append(lin_reg_tuple)
# for i, value_freq in enumerate(stg.freq):
# for k, value_t in enumerate(stg.t):
# # print(f"indice i: {i}, indice k: {k}")
# # print(f"values of FCB: {stg.FCB[:, i, k]}")
# y = stg.FCB[:, i, k]
# # print("y : ", y)
# # print(f"values of FCB where FCB is not Nan {y[np.where(np.isnan(y) == False)]}")
# # print(f"values of r where FCB is not Nan {x[np.where(np.isnan(y) == False)]}")
# lin_reg_compute = stats.linregress(x[np.where(np.isnan(y) == False)], y[np.where(np.isnan(y) == False)])
# lin_reg_tuple = (lin_reg_compute.slope, lin_reg_compute.intercept)
# stg.lin_reg.append(lin_reg_tuple)
# print(f"y = {lin_reg.slope}x + {lin_reg.intercept}")
# print(f"y = {lin_reg.slope}x + {lin_reg.intercept}")
# plt.figure()
# plt.plot(stg.r, stg.FCB[:, 0, 825], 'k-', stg.r, lin_reg.slope*stg.r + lin_reg.intercept, "b--")
# plt.show()
# plt.figure()
# plt.plot(stg.r, stg.FCB[:, 0, 825], 'k-', stg.r, lin_reg.slope*stg.r + lin_reg.intercept, "b--")
# plt.show()
# print("lin_reg length ", len(stg.lin_reg))
# print("lin_reg ", stg.lin_reg)
# print("lin_reg length ", len(stg.lin_reg))
# print("lin_reg ", stg.lin_reg)
# ---------------------------------------- PLOT PROFILE POSITION ON TRANSECT ---------------------------------------