Compare commits

..

No commits in common. "11ced0a263ca657902256000c9236adc90046d21" and "571ac20d37fb441431f222589aa267bda8a6d696" have entirely different histories.

11 changed files with 299 additions and 436 deletions

View File

@ -31,13 +31,13 @@ class AboutWindow(QDialog):
super().__init__()
self.logo_path = "./logos"
self.logo_AcouSed = QPixmap(self.logo_path + "/" + "AcouSed.png")
self.logo_path = "./Logo"
self.logo_AcouSed = QPixmap(self.logo_path + "/" + "Logo_AcouSed_AboutAcouSedWindow.png")
self.logo_AcouSed.scaled(16, 16, Qt.KeepAspectRatio, Qt.SmoothTransformation)
self.logo_INRAE = QPixmap(self.logo_path + "/" + "BlocMarque-INRAE-Inter.jpg")
self.setGeometry(400, 200, 350, 200)
self.setGeometry(400, 200, 300, 200)
self.setWindowTitle("About AcouSed")
@ -51,7 +51,7 @@ class AboutWindow(QDialog):
self.label_logo_AcouSed = QLabel()
self.label_logo_AcouSed.setPixmap(self.logo_AcouSed.scaledToHeight(128, Qt.SmoothTransformation))
self.gridLayout.addWidget(self.label_logo_AcouSed, 0, 0, 5, 1, Qt.AlignCenter)
self.gridLayout.addWidget(self.label_logo_AcouSed, 0, 0, 3, 1, Qt.AlignCenter)
self.label_acoused = QLabel()
self.label_acoused.setText("Acoused 2.0")
@ -70,13 +70,7 @@ class AboutWindow(QDialog):
self.label_contact = QLabel()
self.label_contact.setText("Contact : celine.berni@inrae.fr \n"
" jerome.lecoz@inrae.fr")
self.gridLayout.addWidget(self.label_contact, 3, 1, 1, 1, Qt.AlignCenter)
self.label_link = QLabel()
self.label_link.setText("< a href = https://forgemia.inra.fr/theophile.terraz/acoused > "
"https://forgemia.inra.fr/theophile.terraz/acoused </a>")
self.label_link.setOpenExternalLinks(True)
self.gridLayout.addWidget(self.label_link, 4, 1, 1, 1, Qt.AlignCenter)
self.gridLayout.addWidget(self.label_contact, 3, 1, 1, 1, Qt.AlignLeft)
# ----------------------------------------------------------
@ -185,7 +179,7 @@ class Support(QDialog):
super().__init__()
self.logo_path = "./logos"
self.logo_path = "./Logo"
self.logo_OSR = QPixmap(self.logo_path + '/' + "OSR.png")
self.logo_CNR = QPixmap(self.logo_path + '/' + "CNR.png")

View File

@ -626,19 +626,17 @@ class AcousticDataTab(QWidget):
self.delBtn.clicked.connect(self.remove_file_from_ListWidget)
self.clearBtn.clicked.connect(self.clear_files_from_ListWidget)
self.fileListWidget.itemSelectionChanged.connect(self.fileListWidget_event)
# self.fileListWidget.itemSelectionChanged.connect(self.print_selected_file)
# self.fileListWidget.itemSelectionChanged.connect(self.fill_measurements_information_groupbox)
# self.fileListWidget.itemSelectionChanged.connect(self.fill_table)
# self.fileListWidget.itemSelectionChanged.connect(self.compute_tmin_tmax)
# self.fileListWidget.itemSelectionChanged.connect(self.compute_rmin_rmax)
# self.fileListWidget.itemSelectionChanged.connect(self.update_frequency_combobox)
# # self.fileListWidget.itemSelectionChanged.connect(self.plot_backscattered_acoustic_signal_recording)
# # self.fileListWidget.itemSelectionChanged.connect(self.plot_profile)
# self.fileListWidget.itemSelectionChanged.connect(self.update_plot_backscattered_acoustic_signal_recording)
# self.fileListWidget.itemSelectionChanged.connect(self.update_plot_profile)
# self.fileListWidget.itemSelectionChanged.connect(self.set_range_for_spinboxes_bathymetry)
self.fileListWidget.itemSelectionChanged.connect(self.print_selected_file)
self.fileListWidget.itemSelectionChanged.connect(self.fill_measurements_information_groupbox)
self.fileListWidget.itemSelectionChanged.connect(self.fill_table)
self.fileListWidget.itemSelectionChanged.connect(self.compute_tmin_tmax)
self.fileListWidget.itemSelectionChanged.connect(self.compute_rmin_rmax)
self.fileListWidget.itemSelectionChanged.connect(self.update_frequency_combobox)
# self.fileListWidget.itemSelectionChanged.connect(self.plot_backscattered_acoustic_signal_recording)
self.fileListWidget.itemSelectionChanged.connect(self.plot_profile)
self.fileListWidget.itemSelectionChanged.connect(self.update_plot_backscattered_acoustic_signal_recording)
self.fileListWidget.itemSelectionChanged.connect(self.update_plot_profile)
self.fileListWidget.itemSelectionChanged.connect(self.set_range_for_spinboxes_bathymetry)
self.combobox_ABS_name.currentIndexChanged.connect(self.fill_measurements_information_groupbox)
@ -746,20 +744,6 @@ class AcousticDataTab(QWidget):
self.groupbox_transect_2Dplot_raw_BS_data.setTitle(_translate("CONSTANT_STRING", cs.RAW_ACOUSTIC_DATA_2D_FIELD))
def fileListWidget_event(self):
self.print_selected_file()
self.fill_measurements_information_groupbox()
self.fill_table()
self.compute_tmin_tmax()
self.compute_rmin_rmax()
self.update_frequency_combobox()
# self.fileListWidget.itemSelectionChanged.connect(self.plot_backscattered_acoustic_signal_recording)
# self.fileListWidget.itemSelectionChanged.connect(self.plot_profile)
self.update_plot_backscattered_acoustic_signal_recording()
self.update_plot_profile()
self.set_range_for_spinboxes_bathymetry()
def print_selected_file(self):
print(f"Selected file in list widget : {self.fileListWidget.selectedItems()}")
print("self.fileListWidget.selectedItems()[1:] : ", self.fileListWidget.selectedItems()[1:])
@ -1343,12 +1327,8 @@ class AcousticDataTab(QWidget):
self.fill_measurements_information_groupbox()
self.fill_table()
self.plot_backscattered_acoustic_signal_recording()
self.plot_profile()
self.update_frequency_combobox()
self.water_attenuation()
self.compute_tmin_tmax()
self.compute_rmin_rmax()
self.set_range_for_spinboxes_bathymetry()
stg.acoustic_data = list(
range(
@ -1381,39 +1361,26 @@ class AcousticDataTab(QWidget):
del current_item
# --- Clear variables ---
list_to_pop1 = [
"stg.acoustic_data", "stg.date", "stg.hour",
"stg.freq", "stg.freq_text",
"stg.nb_profiles", "stg.nb_profiles_per_sec",
"stg.nb_cells", "stg.cell_size",
"stg.pulse_length", "stg.nb_pings_per_sec",
"stg.nb_pings_averaged_per_profile",
"stg.kt_read", "stg.kt_corrected", "stg.gain_rx", "stg.gain_tx",
"stg.filename_BS_raw_data", "stg.path_BS_raw_data",
"stg.BS_raw_data", "stg.time", "stg.depth",
"stg.BS_raw_data_reshape", "stg.time_reshape", "stg.depth_reshape"
]
list_to_pop1 = ["stg.acoustic_data", "stg.date", "stg.hour", "stg.freq", "stg.freq_text", "stg.temperature",
"stg.nb_profiles", "stg.nb_profiles_per_sec", "stg.nb_cells", "stg.cell_size",
"stg.pulse_length", "stg.nb_pings_per_sec", "stg.nb_pings_averaged_per_profile",
"stg.kt_read", "stg.kt_corrected", "stg.gain_rx", "stg.gain_tx",
"stg.filename_BS_raw_data", "stg.path_BS_raw_data",
"stg.BS_raw_data", "stg.time", "stg.depth",
"stg.BS_raw_data_reshape", "stg.time_reshape", "stg.depth_reshape"]
for p in list_to_pop1:
if isinstance(eval(p), list):
if isinstance(p, list):
exec(p + ".pop(current_row)")
if stg.BS_cross_section:
list_to_pop2 = ["stg.rmin", "stg.rmax", "stg.tmin", "stg.tmax",
"stg.time_cross_section", "stg.depth_cross_section", "stg.BS_cross_section"]
"stg.time_cross_section", "stg.BS_cross_section"]
for k in list_to_pop2:
exec(k + ".pop(current_row)")
if stg.BS_stream_bed:
list_to_pop3 = ["stg.BS_stream_bed", "stg.depth_bottom",
"stg.val_bottom", "stg.ind_bottom", "stg.freq_bottom_detection"]
for s in list_to_pop3:
exec(s + ".pop(current_row)")
if self.fileListWidget.count() == 0:
# --- Clear measurements information ---
@ -1492,26 +1459,24 @@ class AcousticDataTab(QWidget):
list_to_clear = [
"stg.acoustic_data", "stg.date", "stg.hour",
"stg.freq", "stg.freq_text",
"stg.freq", "stg.freq_text", "stg.temperature",
"stg.nb_profiles", "stg.nb_profiles_per_sec",
"stg.nb_cells", "stg.cell_size",
"stg.pulse_length", "stg.nb_pings_per_sec",
"stg.nb_pings_averaged_per_profile",
"stg.kt_read", "stg.kt_corrected", "stg.gain_rx", "stg.gain_tx",
"stg.filename_BS_raw_data", "stg.path_BS_raw_data",
"stg.BS_raw_data", "stg.time", "stg.depth",
"stg.BS_raw_data_reshape", "stg.time_reshape", "stg.depth_reshape",
"stg.rmin", "stg.rmax", "stg.tmin", "stg.tmax",
"stg.time_cross_section", "stg.depth_cross_section",
"stg.BS_cross_section", "stg.BS_stream_bed"
"stg.BS_cross_section"
]
for k in list_to_clear:
if isinstance(eval(k), list):
if isinstance(k, list):
exec(k + ".clear()")
self.fileListWidget.clear()
# self.fileListWidget.takeItem(0)
if self.fileListWidget.count() == 0:
# --- Clear measurmeents information ---
@ -1718,13 +1683,9 @@ class AcousticDataTab(QWidget):
self.fill_measurements_information_groupbox_kt()
def fill_measurements_information_groupbox_datetime(self):
file_id = self.fileListWidget.currentRow()
print("file_id ", file_id)
print("stg.date ", stg.date)
self.label_date_acoustic_file.clear()
self.label_date_acoustic_file.setText(
"Date: " + str(stg.date[file_id])
"Date: " + str(stg.date[self.fileListWidget.currentRow()])
)
self.gridLayout_groupbox_info.addWidget(
self.label_date_acoustic_file,
@ -1734,7 +1695,7 @@ class AcousticDataTab(QWidget):
self.label_hour_acoustic_file.clear()
self.label_hour_acoustic_file.setText(
"Hour: " + str(stg.hour[file_id])
"Hour: " + str(stg.hour[self.fileListWidget.currentRow()])
)
self.gridLayout_groupbox_info.addWidget(
self.label_hour_acoustic_file,
@ -2051,8 +2012,7 @@ class AcousticDataTab(QWidget):
)
def fill_table(self):
# if self.fileListWidget.currentRow() != -1:
if self.fileListWidget.selectedItems() != []:
if self.fileListWidget.currentRow() != -1:
file_id = self.fileListWidget.currentRow()
header_list = []

View File

@ -39,7 +39,6 @@ from View.about_window import AboutWindow
import settings as stg
import numpy as np
import pandas as pd
from subprocess import Popen
import time
@ -326,21 +325,23 @@ class Ui_MainWindow(object):
self.open_doc_file('Tutorial_AQUAscat_software.pdf')
def export_table_of_acoustic_BS_values_to_excel_or_libreOfficeCalc_file(self):
if len(stg.BS_raw_data_reshape) != 0:
name = QtWidgets.QFileDialog.getExistingDirectory(
caption="Select Directory - Acoustic BS raw data Table"
)
# --- Open file dialog to select the directory ---
name = QtWidgets.QFileDialog.getExistingDirectory(caption="Select Directory - Acoustic BS raw data Table")
print("name table to save ", name)
# --- Save the raw acoustic backscatter data from a
# --- Dataframe to csv file ---
# --- Save the raw acoustic backscatter data from a Dataframe to csv file ---
t0 = time.time()
print("len(stg.BS_raw_data_reshape) ",
len(stg.BS_raw_data_reshape))
print("len(stg.BS_raw_data_reshape) ", len(stg.BS_raw_data_reshape))
if name:
for i in range(len(stg.BS_raw_data_reshape)):
header_list = []
header_list.clear()
table_data = np.array([[]])
@ -350,42 +351,27 @@ class Ui_MainWindow(object):
header_list.append("BS - " + freq_value)
if freq_ind == 0:
table_data = np.vstack(
(
np.vstack(
(stg.time_reshape[i][:, freq_ind],
stg.depth_reshape[i][:, freq_ind])),
stg.BS_raw_data_reshape[i][:, freq_ind]
)
)
table_data = np.vstack((np.vstack((stg.time_reshape[i][:, freq_ind],
stg.depth_reshape[i][:, freq_ind])),
stg.BS_raw_data_reshape[i][:, freq_ind]))
else:
table_data = np.vstack(
(
table_data,
np.vstack((
np.vstack((
stg.time_reshape[i][:, freq_ind],
stg.depth_reshape[i][:, freq_ind]
)),
stg.BS_raw_data_reshape[i][:, freq_ind]
))
)
)
table_data = np.vstack((table_data,
np.vstack((np.vstack(
(stg.time_reshape[i][:, freq_ind],
stg.depth_reshape[i][:, freq_ind])),
stg.BS_raw_data_reshape[i][:, freq_ind]))
))
DataFrame_acoustic = pd.DataFrame(None)
DataFrame_acoustic = pd.DataFrame(
data=table_data.transpose(), columns=header_list
)
exec("DataFrame_acoustic_" + str(i) + "= pd.DataFrame(None)")
exec("DataFrame_acoustic_" + str(i) + "= pd.DataFrame(data=table_data.transpose(), columns=header_list)")
DataFrame_acoustic.to_csv(
path_or_buf=os.path.join(
name,
f"Table_{str(stg.filename_BS_raw_data[i][:-4])}.csv"
),
header=DataFrame_acoustic.columns,
sep=',',
)
exec("DataFrame_acoustic_" + str(i) + ".to_csv(" +
"path_or_buf=" +
"'" + name + "/" + "Table_" +
str(stg.filename_BS_raw_data[i][:-4]) + ".csv'" + ", " +
"sep=" + "',' " + ", " +
"header=DataFrame_acoustic_" + str(i) + ".columns" + ")")
t1 = time.time() - t0
print("time duration export BS ", t1)

View File

@ -1716,47 +1716,32 @@ class SedimentCalibrationTab(QWidget):
self.animaiton_groupbox_compute.start()
def import_calibration_file(self):
filename = QFileDialog.getOpenFileName(
self, "Open calibration",
[
stg.path_calibration_file
if stg.path_calibration_file
else stg.path_BS_raw_data[-1]
if self.combobox_acoustic_data_choice.count() > 0
else ""
][0],
"Calibration file (*.xls, *.ods, *csv)",
options=QFileDialog.DontUseNativeDialog
)
if self.combobox_acoustic_data_choice.count() == 0:
msgBox = QMessageBox()
msgBox.setWindowTitle("Calibration import error")
msgBox.setIconPixmap(
QPixmap(
self._path_icon("no_approved.png")
).scaledToHeight(32, Qt.SmoothTransformation)
)
msgBox.setText("Update data before importing calibration")
msgBox.setStandardButtons(QMessageBox.Ok)
msgBox.exec()
dir_name = os.path.dirname(filename[0])
name = os.path.basename(filename[0])
else:
stg.path_calibration_file = dir_name
stg.filename_calibration_file = name
filename = QFileDialog.getOpenFileName(
self, "Open calibration",
[
stg.path_calibration_file
if stg.path_calibration_file
else stg.path_BS_raw_data[-1]
if self.combobox_acoustic_data_choice.count() > 0
else ""
][0],
"Calibration file (*.xls, *.ods, *csv)",
options=QFileDialog.DontUseNativeDialog
)
self.lineEdit_import_calibration.clear()
self.lineEdit_import_calibration.setText(name)
dir_name = os.path.dirname(filename[0])
name = os.path.basename(filename[0])
self.lineEdit_import_calibration.setToolTip(dir_name)
stg.path_calibration_file = dir_name
stg.filename_calibration_file = name
self.lineEdit_import_calibration.clear()
self.lineEdit_import_calibration.setText(name)
self.lineEdit_import_calibration.setToolTip(dir_name)
self.compute_depth_2D()
self.read_calibration_file_and_fill_parameter()
self.compute_depth_2D()
self.read_calibration_file_and_fill_parameter()
def update_label_freq1_for_calibration(self):
self.label_freq1.clear()
@ -1799,14 +1784,26 @@ class SedimentCalibrationTab(QWidget):
)
def read_calibration_file_and_fill_parameter(self):
if stg.filename_calibration_file == "":
pass
if self.combobox_acoustic_data_choice.count() == 0:
msgBox = QMessageBox()
msgBox.setWindowTitle("Calibration import error")
msgBox.setIconPixmap(
QPixmap(
self._path_icon("no_approved.png")
).scaledToHeight(32, Qt.SmoothTransformation)
)
msgBox.setText("Update data before importing calibration")
msgBox.setStandardButtons(QMessageBox.Ok)
msgBox.exec()
else:
# --- Read calibration file ---
data = pd.read_csv(os.path.join(stg.path_calibration_file, stg.filename_calibration_file), header=0, index_col=0)
data = pd.read_csv(
os.path.join(
stg.path_calibration_file,
stg.filename_calibration_file
),
header=0, index_col=0
)
# --- Fill spinboxes of calibration parameter ---
self.label_temperature.clear()
@ -2000,31 +1997,17 @@ class SedimentCalibrationTab(QWidget):
def function_pushbutton_compute_calibration(self):
if self.combobox_acoustic_data_choice.count() == 0:
msgBox = QMessageBox()
msgBox.setWindowTitle("Calibration computation error")
msgBox.setIconPixmap(
QPixmap(
self._path_icon("no_approved.png")
).scaledToHeight(32, Qt.SmoothTransformation)
)
msgBox.setText("Update data before importing calibration")
msgBox.setStandardButtons(QMessageBox.Ok)
msgBox.exec()
self.label_temperature.clear()
self.label_temperature.setText("T = " + str(stg.temperature) + " °C")
else:
self.label_temperature.clear()
self.label_temperature.setText("T = " + str(stg.temperature) + " °C")
self.compute_depth_2D()
self.compute_ks()
self.compute_sv()
self.compute_X()
self.compute_kt2D_kt3D()
self.compute_J_cross_section()
self.compute_alpha_s()
self.compute_zeta()
self.compute_depth_2D()
self.compute_ks()
self.compute_sv()
self.compute_X()
self.compute_kt2D_kt3D()
self.compute_J_cross_section()
self.compute_alpha_s()
self.compute_zeta()
def compute_ks(self):
data_id = self.combobox_acoustic_data_choice.currentIndex()
@ -2076,11 +2059,11 @@ class SedimentCalibrationTab(QWidget):
stg.sv = [sv_freq1, sv_freq2]
logger.debug(
print(
f"sv for frequency of {stg.freq[data_id][self.combobox_freq1.currentIndex()]}"
+ f" : {sv_freq1:.8f} /m \n"
)
logger.debug(
print(
f"sv for frequency of {stg.freq[data_id][self.combobox_freq2.currentIndex()]}"
+ f" : {sv_freq2:.8f} /m"
)
@ -2103,7 +2086,7 @@ class SedimentCalibrationTab(QWidget):
stg.X_exponent.clear()
stg.X_exponent.append(X_exponent)
logger.debug(f"Exponent X = {X_exponent:.2f}\n")
print(f"Exponent X = {X_exponent:.2f}\n")
self.lineEdit_X.setText(str("%.2f" % X_exponent))
@ -2154,7 +2137,6 @@ class SedimentCalibrationTab(QWidget):
]
for i in range(self.combobox_acoustic_data_choice.count()):
J_cross_section_freq1 = np.array([])
J_cross_section_freq2 = np.array([])
@ -2228,8 +2210,8 @@ class SedimentCalibrationTab(QWidget):
stg.alpha_s = [alpha_s_freq1, alpha_s_freq2]
logger.debug(f"\u03B1s for frequency of freq1 : {alpha_s_freq1:.2f} /m \n")
logger.debug(f"\u03B1s for frequency of freq2 : {alpha_s_freq2:.2f} /m")
print(f"\u03B1s for frequency of freq1 : {alpha_s_freq1:.2f} /m \n")
print(f"\u03B1s for frequency of freq2 : {alpha_s_freq2:.2f} /m")
self.lineEdit_alphas_freq1.clear()
self.lineEdit_alphas_freq1.setText(str("%.5f" % alpha_s_freq1))
@ -2238,19 +2220,25 @@ class SedimentCalibrationTab(QWidget):
self.lineEdit_alphas_freq2.setText(str("%.5f" % alpha_s_freq2))
if (alpha_s_freq1 < 0) or (alpha_s_freq2 < 0):
msgBox = QMessageBox()
msgBox.setWindowTitle("Alpha computation error")
msgBox.setIconPixmap(QPixmap(self._path_icon("no_approved.png")).scaledToHeight(32, Qt.SmoothTransformation))
msgBox.setIconPixmap(
QPixmap(
self._path_icon("no_approved.png")
).scaledToHeight(32, Qt.SmoothTransformation)
)
msgBox.setText("Sediment sound attenuation is negative !")
msgBox.setStandardButtons(QMessageBox.Ok)
msgBox.exec()
else:
msgBox = QMessageBox()
msgBox.setWindowTitle("Alpha computation validation")
msgBox.setIconPixmap(QPixmap(self._path_icon("approved.png")).scaledToHeight(32, Qt.SmoothTransformation))
msgBox.setIconPixmap(
QPixmap(
self._path_icon("approved.png")
).scaledToHeight(32, Qt.SmoothTransformation)
)
msgBox.setText("Sediment sound attenuation is positive.")
msgBox.setStandardButtons(QMessageBox.Ok)
msgBox.exec()
@ -2292,8 +2280,8 @@ class SedimentCalibrationTab(QWidget):
stg.zeta = [zeta_freq1, zeta_freq2]
logger.debug(f"\u03B6 for frequency of freq1 : {zeta_freq1:.3f} /m \n")
logger.debug(f"\u03B6 for frequency of freq2 : {zeta_freq2:.3f} /m")
print(f"\u03B6 for frequency of freq1 : {zeta_freq1:.3f} /m \n")
print(f"\u03B6 for frequency of freq2 : {zeta_freq2:.3f} /m")
self.lineEdit_zeta_freq1.clear()
self.lineEdit_zeta_freq1.setText(str("%.5f" % zeta_freq1))
@ -2751,4 +2739,3 @@ class SedimentCalibrationTab(QWidget):
self.lineEdit_slider_FCB.setText(
str(stg.time[self.combobox_acoustic_data_choice.currentIndex()][
self.combobox_frequency_FCB.currentIndex(), self.slider_FCB.value()-1]))

View File

@ -447,8 +447,8 @@ class SignalProcessingTab(QWidget):
# --------------------------------------------------------------------------------------------------------------
self.pushbutton_update.clicked.connect(self.update_SignalPreprocessingTab)
# self.pushbutton_update.clicked.connect(self.compute_average_profile_tail)
# self.pushbutton_update.clicked.connect(self.plot_averaged_profile_tail)
self.pushbutton_update.clicked.connect(self.compute_average_profile_tail)
self.pushbutton_update.clicked.connect(self.plot_averaged_profile_tail)
self.combobox_acoustic_data_choice.currentIndexChanged.connect(self.combobox_acoustic_data_choice_change_index)
@ -501,39 +501,26 @@ class SignalProcessingTab(QWidget):
- the user remove a file (in the list widget) in the first tab (Acoustic data), so that the combobox
of data to be processed is updated,
- the user change the limits of one or all the records in the first tab (Acoustic data) """
if len(stg.filename_BS_raw_data) == 0:
msgBox = QMessageBox()
msgBox.setWindowTitle("Compute noise from profile tail error")
msgBox.setIcon(QMessageBox.Warning)
msgBox.setText("Download acoustic data in previous tab before updating data")
msgBox.setStandardButtons(QMessageBox.Ok)
msgBox.exec()
self.combobox_acoustic_data_choice.clear()
self.combobox_acoustic_data_choice.addItems(stg.filename_BS_raw_data)
else:
if stg.noise_method[self.combobox_acoustic_data_choice.currentIndex()] == 0:
self.combobox_acoustic_data_choice.clear()
self.combobox_acoustic_data_choice.addItems(stg.filename_BS_raw_data)
self.groupbox_download_noise_file.setChecked(True)
self.groupbox_compute_noise_from_profile_tail.setChecked(False)
self.groupbox_download_noise_file_toggle()
if stg.noise_method[self.combobox_acoustic_data_choice.currentIndex()] == 0:
elif stg.noise_method[self.combobox_acoustic_data_choice.currentIndex()] == 1:
self.groupbox_download_noise_file.setChecked(True)
self.groupbox_compute_noise_from_profile_tail.setChecked(False)
self.groupbox_download_noise_file_toggle()
self.groupbox_download_noise_file.setChecked(False)
self.groupbox_compute_noise_from_profile_tail.setChecked(True)
self.groupbox_option_profile_tail_toggle()
elif stg.noise_method[self.combobox_acoustic_data_choice.currentIndex()] == 1:
self.combobox_freq_noise_from_profile_tail.clear()
self.combobox_freq_noise_from_profile_tail.addItems(stg.freq_text[self.combobox_acoustic_data_choice.currentIndex()])
self.groupbox_download_noise_file.setChecked(False)
self.groupbox_compute_noise_from_profile_tail.setChecked(True)
self.groupbox_option_profile_tail_toggle()
self.combobox_freq_noise_from_profile_tail.clear()
self.combobox_freq_noise_from_profile_tail.addItems(stg.freq_text[self.combobox_acoustic_data_choice.currentIndex()])
self.combobox_acoustic_data_choice.currentIndexChanged.connect(self.combobox_acoustic_data_choice_change_index)
self.compute_average_profile_tail()
self.plot_averaged_profile_tail()
self.combobox_acoustic_data_choice.currentIndexChanged.connect(self.combobox_acoustic_data_choice_change_index)
def activate_list_of_pre_processed_data(self):
for i in range(self.combobox_acoustic_data_choice.count()):
@ -667,65 +654,45 @@ class SignalProcessingTab(QWidget):
# --- Plot averaged signal ---
if len(stg.filename_BS_raw_data) == 0:
if stg.BS_mean[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
msgBox = QMessageBox()
msgBox.setWindowTitle("Compute noise from profile tail error")
msgBox.setIcon(QMessageBox.Warning)
msgBox.setText("Download acoustic data in previous tab before computing noise from profile tail")
msgBox.setStandardButtons(QMessageBox.Ok)
msgBox.exec()
self.verticalLayout_groupbox_plot_profile_tail.removeWidget(self.canvas_profile_tail)
elif self.combobox_acoustic_data_choice.count() == 0:
self.fig_profile_tail, self.axis_profile_tail = plt.subplots(nrows=1, ncols=1, layout='constrained')
self.canvas_profile_tail = FigureCanvas(self.fig_profile_tail)
msgBox = QMessageBox()
msgBox.setWindowTitle("Compute noise from profile tail error")
msgBox.setIcon(QMessageBox.Warning)
msgBox.setText("Refresh acoustic data before computing noise from profile tail")
msgBox.setStandardButtons(QMessageBox.Ok)
msgBox.exec()
self.verticalLayout_groupbox_plot_profile_tail.addWidget(self.canvas_profile_tail)
else:
self.axis_profile_tail.plot(
-stg.depth[self.combobox_acoustic_data_choice.currentIndex()][self.combobox_freq_noise_from_profile_tail.currentIndex()],
stg.BS_mean[self.combobox_acoustic_data_choice.currentIndex()][self.combobox_freq_noise_from_profile_tail.currentIndex()],
color="blue", linewidth=1)
self.axis_profile_tail.plot(
-stg.depth[self.combobox_acoustic_data_choice.currentIndex()][
self.combobox_freq_noise_from_profile_tail.currentIndex()],
float(self.lineEdit_profile_tail_value.text().replace(",", ".")) *
np.ones(stg.depth[self.combobox_acoustic_data_choice.currentIndex()][
self.combobox_freq_noise_from_profile_tail.currentIndex()].shape[0]),
linestyle='dashed', linewidth=2, color='red')
if stg.BS_mean[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
self.axis_profile_tail.set_yscale('log')
self.axis_profile_tail.tick_params(axis='both', labelsize=8)
self.axis_profile_tail.text(.98, .03, "Depth (m)",
fontsize=8, fontweight='bold', fontname="Ubuntu", c="black", alpha=0.9,
horizontalalignment='right', verticalalignment='bottom', rotation='horizontal',
transform=self.axis_profile_tail.transAxes)
self.axis_profile_tail.text(.1, .45, "BS signal (v)",
fontsize=8, fontweight='bold', fontname="Ubuntu", c="black", alpha=0.9,
horizontalalignment='right', verticalalignment='bottom', rotation='vertical',
transform=self.axis_profile_tail.transAxes)
self.axis_profile_tail.text(.98, .85,
stg.freq_text[self.combobox_acoustic_data_choice.currentIndex()][
self.combobox_freq_noise_from_profile_tail.currentIndex()],
fontsize=10, fontweight='bold', fontname="Ubuntu", c="black", alpha=0.5,
horizontalalignment='right', verticalalignment='bottom',
transform=self.axis_profile_tail.transAxes)
self.verticalLayout_groupbox_plot_profile_tail.removeWidget(self.canvas_profile_tail)
self.fig_profile_tail, self.axis_profile_tail = plt.subplots(nrows=1, ncols=1, layout='constrained')
self.canvas_profile_tail = FigureCanvas(self.fig_profile_tail)
self.verticalLayout_groupbox_plot_profile_tail.addWidget(self.canvas_profile_tail)
self.axis_profile_tail.plot(
-stg.depth[self.combobox_acoustic_data_choice.currentIndex()][self.combobox_freq_noise_from_profile_tail.currentIndex()],
stg.BS_mean[self.combobox_acoustic_data_choice.currentIndex()][self.combobox_freq_noise_from_profile_tail.currentIndex()],
color="blue", linewidth=1)
self.axis_profile_tail.plot(
-stg.depth[self.combobox_acoustic_data_choice.currentIndex()][
self.combobox_freq_noise_from_profile_tail.currentIndex()],
float(self.lineEdit_profile_tail_value.text().replace(",", ".")) *
np.ones(stg.depth[self.combobox_acoustic_data_choice.currentIndex()][
self.combobox_freq_noise_from_profile_tail.currentIndex()].shape[0]),
linestyle='dashed', linewidth=2, color='red')
self.axis_profile_tail.set_yscale('log')
self.axis_profile_tail.tick_params(axis='both', labelsize=8)
self.axis_profile_tail.text(.98, .03, "Depth (m)",
fontsize=8, fontweight='bold', fontname="Ubuntu", c="black", alpha=0.9,
horizontalalignment='right', verticalalignment='bottom', rotation='horizontal',
transform=self.axis_profile_tail.transAxes)
self.axis_profile_tail.text(.1, .45, "BS signal (v)",
fontsize=8, fontweight='bold', fontname="Ubuntu", c="black", alpha=0.9,
horizontalalignment='right', verticalalignment='bottom', rotation='vertical',
transform=self.axis_profile_tail.transAxes)
self.axis_profile_tail.text(.98, .85,
stg.freq_text[self.combobox_acoustic_data_choice.currentIndex()][
self.combobox_freq_noise_from_profile_tail.currentIndex()],
fontsize=10, fontweight='bold', fontname="Ubuntu", c="black", alpha=0.5,
horizontalalignment='right', verticalalignment='bottom',
transform=self.axis_profile_tail.transAxes)
self.fig_profile_tail.canvas.draw_idle()
self.fig_profile_tail.canvas.draw_idle()
# ------------------------------------------------------
@ -755,87 +722,82 @@ class SignalProcessingTab(QWidget):
def clear_noise_data(self):
if len(stg.filename_BS_raw_data) == 0:
stg.BS_noise_raw_data[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.BS_noise_averaged_data[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.SNR_raw_data[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.SNR_cross_section[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.SNR_stream_bed[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.time_noise[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.noise_method[self.combobox_acoustic_data_choice.currentIndex()] = 0
stg.SNR_filter_value[self.combobox_acoustic_data_choice.currentIndex()] = 0
pass
stg.BS_raw_data_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.BS_raw_data_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
else:
stg.BS_cross_section_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.BS_cross_section_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.BS_noise_raw_data[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.BS_noise_averaged_data[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.SNR_raw_data[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.SNR_cross_section[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.SNR_stream_bed[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.time_noise[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.SNR_filter_value[self.combobox_acoustic_data_choice.currentIndex()] = 0
stg.BS_stream_bed_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.BS_stream_bed_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.BS_raw_data_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.BS_raw_data_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
if stg.noise_method[self.combobox_acoustic_data_choice.currentIndex()] == 0:
self.lineEdit_noise_file.clear()
stg.BS_cross_section_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.BS_cross_section_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
elif stg.noise_method[self.combobox_acoustic_data_choice.currentIndex()] == 1:
self.lineEdit_val1.clear()
self.lineEdit_val1.setText("0.00")
stg.BS_stream_bed_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.BS_stream_bed_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
print("stg.noise_method[self.combobox_acoustic_data_choice.currentIndex()]", stg.noise_method[self.combobox_acoustic_data_choice.currentIndex()])
if stg.noise_method[self.combobox_acoustic_data_choice.currentIndex()] == 0:
self.lineEdit_noise_file.clear()
self.lineEdit_val2.clear()
self.lineEdit_val2.setText("0.00")
elif stg.noise_method[self.combobox_acoustic_data_choice.currentIndex()] == 1:
self.lineEdit_val1.clear()
self.lineEdit_val1.setText("0.00")
self.lineEdit_profile_tail_value.clear()
self.lineEdit_profile_tail_value.setText("0.0000")
self.lineEdit_val2.clear()
self.lineEdit_val2.setText("0.00")
self.verticalLayout_groupbox_plot_profile_tail.removeWidget(self.canvas_profile_tail)
self.canvas_profile_tail = FigureCanvas()
self.verticalLayout_groupbox_plot_profile_tail.addWidget(self.canvas_profile_tail)
self.lineEdit_profile_tail_value.clear()
self.lineEdit_profile_tail_value.setText("0.0000")
self.lineEdit_SNR_criterion.setText("0.00")
self.lineEdit_horizontal_average.setText("0.00")
self.verticalLayout_groupbox_plot_profile_tail.removeWidget(self.canvas_profile_tail)
self.canvas_profile_tail = FigureCanvas()
self.verticalLayout_groupbox_plot_profile_tail.addWidget(self.canvas_profile_tail)
# --- Clear SNR plot ---
self.verticalLayout_groupbox_plot_SNR.removeWidget(self.toolbar_SNR)
self.verticalLayout_groupbox_plot_SNR.removeWidget(self.scroll_SNR)
self.lineEdit_SNR_criterion.setText("0.00")
self.lineEdit_horizontal_average.setText("0.00")
self.canvas_SNR = FigureCanvas()
self.toolbar_SNR = NavigationToolBar(self.canvas_SNR, self)
self.scroll_SNR.setWidget(self.canvas_SNR)
# --- Clear SNR plot ---
self.verticalLayout_groupbox_plot_SNR.removeWidget(self.toolbar_SNR)
self.verticalLayout_groupbox_plot_SNR.removeWidget(self.scroll_SNR)
self.verticalLayout_groupbox_plot_SNR.addWidget(self.toolbar_SNR)
self.verticalLayout_groupbox_plot_SNR.addWidget(self.scroll_SNR)
self.canvas_SNR = FigureCanvas()
self.toolbar_SNR = NavigationToolBar(self.canvas_SNR, self)
self.scroll_SNR.setWidget(self.canvas_SNR)
# --- Clear BS plot ---
self.verticalLayout_groupbox_plot_pre_processed_data_2D_field.removeWidget(self.toolbar_BS)
self.verticalLayout_groupbox_plot_pre_processed_data_2D_field.removeWidget(self.scroll_BS)
self.verticalLayout_groupbox_plot_SNR.addWidget(self.toolbar_SNR)
self.verticalLayout_groupbox_plot_SNR.addWidget(self.scroll_SNR)
self.canvas_BS = FigureCanvas()
self.toolbar_BS = NavigationToolBar(self.canvas_BS, self)
self.scroll_BS.setWidget(self.canvas_BS)
# --- Clear BS plot ---
self.verticalLayout_groupbox_plot_pre_processed_data_2D_field.removeWidget(self.toolbar_BS)
self.verticalLayout_groupbox_plot_pre_processed_data_2D_field.removeWidget(self.scroll_BS)
self.verticalLayout_groupbox_plot_pre_processed_data_2D_field.addWidget(self.toolbar_BS)
self.verticalLayout_groupbox_plot_pre_processed_data_2D_field.addWidget(self.scroll_BS)
self.canvas_BS = FigureCanvas()
self.toolbar_BS = NavigationToolBar(self.canvas_BS, self)
self.scroll_BS.setWidget(self.canvas_BS)
self.combobox_frequency_profile.clear()
self.verticalLayout_groupbox_plot_pre_processed_data_2D_field.addWidget(self.toolbar_BS)
self.verticalLayout_groupbox_plot_pre_processed_data_2D_field.addWidget(self.scroll_BS)
self.verticalLayout_groupbox_plot_profile.removeWidget(self.toolbar_profile)
self.verticalLayout_groupbox_plot_profile.removeWidget(self.canvas_profile)
self.combobox_frequency_profile.clear()
self.canvas_profile = FigureCanvas()
self.toolbar_profile = NavigationToolBar(self.canvas_profile, self)
self.verticalLayout_groupbox_plot_profile.removeWidget(self.toolbar_profile)
self.verticalLayout_groupbox_plot_profile.removeWidget(self.canvas_profile)
self.verticalLayout_groupbox_plot_profile.addWidget(self.toolbar_profile)
self.verticalLayout_groupbox_plot_profile.addWidget(self.canvas_profile)
self.canvas_profile = FigureCanvas()
self.toolbar_profile = NavigationToolBar(self.canvas_profile, self)
self.slider.setValue(1)
self.slider.setMaximum(10)
self.verticalLayout_groupbox_plot_profile.addWidget(self.toolbar_profile)
self.verticalLayout_groupbox_plot_profile.addWidget(self.canvas_profile)
self.slider.setValue(1)
self.slider.setMaximum(10)
self.slider.setValue(0)
self.slider.setMaximum(10)
self.slider.setValue(0)
self.slider.setMaximum(10)
def open_dialog_box(self):
@ -1259,19 +1221,11 @@ class SignalProcessingTab(QWidget):
def remove_point_with_snr_filter(self):
if len(stg.filename_BS_raw_data) == 0:
msgBox = QMessageBox()
msgBox.setWindowTitle("Compute noise from profile tail error")
msgBox.setIcon(QMessageBox.Warning)
msgBox.setText("Download acoustic data in previous tab before applying SNR filter")
msgBox.setStandardButtons(QMessageBox.Ok)
msgBox.exec()
elif len(stg.BS_noise_raw_data) == 0:
if len(stg.BS_noise_raw_data) == 0:
msgBox = QMessageBox()
msgBox.setWindowTitle("SNR filter Error")
msgBox.setIcon(QMessageBox.Warning)
msgBox.setText("Define noise data (file or profile tail) before using SNR filter")
msgBox.setText("Load Noise data from acoustic data tab before using SNR filter")
msgBox.setStandardButtons(QMessageBox.Ok)
msgBox.exec()
@ -1550,123 +1504,105 @@ class SignalProcessingTab(QWidget):
def compute_averaged_BS_data(self):
if len(stg.filename_BS_raw_data) == 0:
msgBox = QMessageBox()
msgBox.setWindowTitle("Compute noise from profile tail error")
msgBox.setIcon(QMessageBox.Warning)
msgBox.setText("Download acoustic data in previous tab before applying SNR filter")
msgBox.setStandardButtons(QMessageBox.Ok)
msgBox.exec()
kernel_avg = np.ones(2 * int(float(self.lineEdit_horizontal_average.text().replace(",", "."))) + 1)
print(kernel_avg)
elif len(stg.BS_noise_raw_data) == 0:
msgBox = QMessageBox()
msgBox.setWindowTitle("SNR filter Error")
msgBox.setIcon(QMessageBox.Warning)
msgBox.setText("Define noise data (file or profile tail) before using SNR filter")
msgBox.setStandardButtons(QMessageBox.Ok)
msgBox.exec()
stg.Nb_cells_to_average_BS_signal[self.combobox_acoustic_data_choice.currentIndex()] = (
float(self.lineEdit_horizontal_average.text().replace(",", ".")))
if stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
if stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
x_time = stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()]
y_depth = stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()]
elif stg.depth[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
x_time = stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()]
y_depth = stg.depth[self.combobox_acoustic_data_choice.currentIndex()]
else:
kernel_avg = np.ones(2 * int(float(self.lineEdit_horizontal_average.text().replace(",", "."))) + 1)
print(kernel_avg)
if stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
stg.Nb_cells_to_average_BS_signal[self.combobox_acoustic_data_choice.currentIndex()] = (
float(self.lineEdit_horizontal_average.text().replace(",", ".")))
x_time = stg.time[self.combobox_acoustic_data_choice.currentIndex()]
y_depth = stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()]
if stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
elif stg.depth[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
if stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
x_time = stg.time[self.combobox_acoustic_data_choice.currentIndex()]
y_depth = stg.depth[self.combobox_acoustic_data_choice.currentIndex()]
x_time = stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()]
y_depth = stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()]
if stg.BS_stream_bed_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
elif stg.depth[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
stg.BS_stream_bed_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = (deepcopy(
stg.BS_stream_bed_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()]))
x_time = stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()]
y_depth = stg.depth[self.combobox_acoustic_data_choice.currentIndex()]
for f, _ in enumerate(stg.freq[self.combobox_acoustic_data_choice.currentIndex()]):
for i in range(y_depth.shape[1]):
else:
stg.BS_stream_bed_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()][f, i, :] = (
convolve(stg.BS_stream_bed_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()][f, i, :],
kernel_avg))
if stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
elif stg.BS_cross_section_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
x_time = stg.time[self.combobox_acoustic_data_choice.currentIndex()]
y_depth = stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()]
stg.BS_cross_section_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = (deepcopy(
stg.BS_cross_section_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()]))
elif stg.depth[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
for f, _ in enumerate(stg.freq[self.combobox_acoustic_data_choice.currentIndex()]):
for i in range(y_depth.shape[1]):
x_time = stg.time[self.combobox_acoustic_data_choice.currentIndex()]
y_depth = stg.depth[self.combobox_acoustic_data_choice.currentIndex()]
stg.BS_cross_section_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()][f, i, :] = (
convolve(stg.BS_cross_section_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()][f, i, :],
kernel_avg))
if stg.BS_stream_bed_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
elif stg.BS_raw_data_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
stg.BS_stream_bed_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = (deepcopy(
stg.BS_stream_bed_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()]))
stg.BS_raw_data_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = (deepcopy(
stg.BS_raw_data_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()]))
for f, _ in enumerate(stg.freq[self.combobox_acoustic_data_choice.currentIndex()]):
for i in range(y_depth.shape[1]):
for f, _ in enumerate(stg.freq[self.combobox_acoustic_data_choice.currentIndex()]):
for i in range(y_depth.shape[1]):
stg.BS_stream_bed_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()][f, i, :] = (
convolve(stg.BS_stream_bed_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()][f, i, :],
kernel_avg))
stg.BS_raw_data_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()][f, i, :] = (
convolve(stg.BS_raw_data_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()][f, i, :],
kernel_avg))
elif stg.BS_cross_section_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
elif stg.BS_stream_bed[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
stg.BS_cross_section_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = (deepcopy(
stg.BS_cross_section_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()]))
stg.BS_stream_bed_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = (deepcopy(
stg.BS_stream_bed[self.combobox_acoustic_data_choice.currentIndex()]))
for f, _ in enumerate(stg.freq[self.combobox_acoustic_data_choice.currentIndex()]):
for i in range(y_depth.shape[1]):
for f, _ in enumerate(stg.freq[self.combobox_acoustic_data_choice.currentIndex()]):
for i in range(y_depth.shape[1]):
stg.BS_stream_bed_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()][f, i, :] = (
convolve(stg.BS_stream_bed[self.combobox_acoustic_data_choice.currentIndex()][f, i, :], kernel_avg))
stg.BS_cross_section_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()][f, i, :] = (
convolve(stg.BS_cross_section_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()][f, i, :],
kernel_avg))
elif stg.BS_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
elif stg.BS_raw_data_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
stg.BS_cross_section_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = (deepcopy(
stg.BS_cross_section[self.combobox_acoustic_data_choice.currentIndex()]))
stg.BS_raw_data_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = (deepcopy(
stg.BS_raw_data_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()]))
for f, _ in enumerate(stg.freq[self.combobox_acoustic_data_choice.currentIndex()]):
for i in range(y_depth.shape[1]):
stg.BS_cross_section_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()][f, i, :] = (
convolve(stg.BS_cross_section[self.combobox_acoustic_data_choice.currentIndex()][f, i, :],
kernel_avg))
for f, _ in enumerate(stg.freq[self.combobox_acoustic_data_choice.currentIndex()]):
for i in range(y_depth.shape[1]):
elif stg.BS_raw_data[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
stg.BS_raw_data_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()][f, i, :] = (
convolve(stg.BS_raw_data_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()][f, i, :],
kernel_avg))
stg.BS_raw_data_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = (deepcopy(
stg.BS_raw_data[self.combobox_acoustic_data_choice.currentIndex()]))
elif stg.BS_stream_bed[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
for f, _ in enumerate(stg.freq[self.combobox_acoustic_data_choice.currentIndex()]):
for i in range(y_depth.shape[1]):
stg.BS_raw_data_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()][f, i, :] = (
convolve(stg.BS_raw_data[self.combobox_acoustic_data_choice.currentIndex()][f, i, :], kernel_avg))
stg.BS_stream_bed_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = (deepcopy(
stg.BS_stream_bed[self.combobox_acoustic_data_choice.currentIndex()]))
for f, _ in enumerate(stg.freq[self.combobox_acoustic_data_choice.currentIndex()]):
for i in range(y_depth.shape[1]):
stg.BS_stream_bed_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()][f, i, :] = (
convolve(stg.BS_stream_bed[self.combobox_acoustic_data_choice.currentIndex()][f, i, :], kernel_avg))
elif stg.BS_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
stg.BS_cross_section_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = (deepcopy(
stg.BS_cross_section[self.combobox_acoustic_data_choice.currentIndex()]))
for f, _ in enumerate(stg.freq[self.combobox_acoustic_data_choice.currentIndex()]):
for i in range(y_depth.shape[1]):
stg.BS_cross_section_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()][f, i, :] = (
convolve(stg.BS_cross_section[self.combobox_acoustic_data_choice.currentIndex()][f, i, :],
kernel_avg))
elif stg.BS_raw_data[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
stg.BS_raw_data_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = (deepcopy(
stg.BS_raw_data[self.combobox_acoustic_data_choice.currentIndex()]))
for f, _ in enumerate(stg.freq[self.combobox_acoustic_data_choice.currentIndex()]):
for i in range(y_depth.shape[1]):
stg.BS_raw_data_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()][f, i, :] = (
convolve(stg.BS_raw_data[self.combobox_acoustic_data_choice.currentIndex()][f, i, :], kernel_avg))
self.plot_pre_processed_BS_signal()
self.update_plot_pre_processed_profile()
self.plot_pre_processed_BS_signal()
self.update_plot_pre_processed_profile()
def plot_pre_processed_profile(self):

Binary file not shown.

Before

Width:  |  Height:  |  Size: 43 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 54 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 35 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 22 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 6.9 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.4 KiB