Compare commits

..

No commits in common. "671f66058cd5506401af483b9c11f827f4d5dabf" and "761dc9008caaf003f6a03671ac77c895367d1048" have entirely different histories.

7 changed files with 800 additions and 1077 deletions

View File

@ -389,6 +389,10 @@ class CreateTableForSaveAs:
)
)
logger.debug(f"stg.ind_bottom: {stg.ind_bottom[i]}")
logger.debug(np.array([stg.ind_bottom[i]]),
np.array(stg.ind_bottom[i]).shape)
# Commit the transaction after executing INSERT.
cnx.commit()
@ -442,7 +446,7 @@ class CreateTableForSaveAs:
cur.execute(self.create_SedimentsFile)
if stg.path_fine != "" and stg.path_sand != "":
if stg.path_fine != "" and path_sand != "":
cur.execute(
"""
INSERT into SedimentsFile(

View File

@ -1,23 +1,27 @@
# AcouSed
AcouSed for **Acou**stic Backscattering for Concentration of Suspended **Sed**iments in Rivers is a software developped by INRAE, in collaboation with CNR.
AcouSed for **Acou**stic Backscattering for Concentration of Suspended **Sed**iments in Rivers is a software developped by INRAE, in collaboation with CNR.
![](icons/Logo-INRAE.jpg)
It is divided in six tabs:
- Acoustic data : acoustic raw data are downloaded and visualised
It is divided in six tabs:
- Acoustic data : acoustic raw data are downloaded and visualised
- Signal preprocessing : acoustic raw signal is preprocessed with filters
- Sample data : fine and sand sediments samples data are downloaded and visualised
- Sample data : fine and sand sediments samples data are downloaded and visualised
- Calibration : calibration parameter are computed
- Inversion : inversion method is calculated to provide fine and sand sediments fields
## Installation
## Software documentation
### Installation
Acoused is developped for Linux and Windows on Python version 3.8 or
greater. By default, Acoused is developped with Pypi package
dependencies, but is also possible to use Guix package manager to run
Acoused.
## Development documentation
### **TODO** Windows
### Linux
@ -45,15 +49,16 @@ script `guix.sh` to run the program.
guix shell sqlitebrowser -- ./guix.sh
```
## Support files & References
## License
- [ ] [Acoustic inversion method diagram](https://forgemia.inra.fr/theophile.terraz/acoused/-/blob/main/Acoustic_Inversion_theory.pdf?ref_type=heads)
- [ ] [Tutorial AQUAscat software : AQUAtalk](https://forgemia.inra.fr/theophile.terraz/acoused/-/blob/main/Tutorial_AQUAscat_software.pdf?ref_type=heads)
AcouSed
Copyright (C) 2024 - INRAE
This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
- [ ] [Adrien Vergne thesis (2018)](https://theses.fr/2018GREAU046)
- [ ] [Vergne A., Le Coz J., Berni C., & Pierrefeu G. (2020), Water Resources Research, 56(2)](https://doi.org/10.1029/2019WR024877)
- [ ] [Vergne A., Berni C., Le Coz J., & Tencé F., (2021), Water Resources Research, 57(9)](https://doi.org/10.1029/2021WR029589)
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program. If not, see <https://www.gnu.org/licenses/>.
## Authors & Contacts
@ -63,16 +68,15 @@ script `guix.sh` to run the program.
If you have any questions or suggestions, please contact us to celine.berni@inrae.fr and/or jerome.lecoz@inrae.fr.
## Acknowledgment (Funding)
This study was conducted within the [Rhône Sediment Observatory](https://observatoire-sediments-rhone.fr/) (OSR), a multi-partner research program funded through the Plan Rhône by the European Regional Development Fund (ERDF), Agence de lEau RMC, CNR, EDF and three regional councils (Auvergne-Rhône-Alpes, PACA and Occitanie). It was also support by CNR.
This study was conducted within the [Rhône Sediment Observatory](https://observatoire-sediments-rhone.fr/) (OSR), a multi-partner research program funded through the Plan Rhône by the European Regional Development Fund (ERDF), Agence de lEau RMC, CNR, EDF and three regional councils (Auvergne-Rhône-Alpes, PACA and Occitanie). It was also support by CNR.
## Support files & References
## License
- [ ] [Acoustic inversion method diagram](https://forgemia.inra.fr/theophile.terraz/acoused/-/blob/main/Acoustic_Inversion_theory.pdf?ref_type=heads)
- [ ] [Tutorial AQUAscat software : AQUAtalk](https://forgemia.inra.fr/theophile.terraz/acoused/-/blob/main/Tutorial_AQUAscat_software.pdf?ref_type=heads)
AcouSed
Copyright (C) 2024-2025 - INRAE
This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
- [ ] [Adrien Vergne thesis (2018)](https://theses.fr/2018GREAU046)
- [ ] [Vergne A., Le Coz J., Berni C., & Pierrefeu G. (2020), Water Resources Research, 56(2)](https://doi.org/10.1029/2019WR024877)
- [ ] [Vergne A., Berni C., Le Coz J., & Tencé F., (2021), Water Resources Research, 57(9)](https://doi.org/10.1029/2021WR029589)
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program. If not, see <https://www.gnu.org/licenses/>.

File diff suppressed because it is too large Load Diff

View File

@ -20,11 +20,16 @@
# -*- coding: utf-8 -*-
import os
import numpy as np
import pandas as pd
from copy import deepcopy
import pandas as pd
from PyQt5.QtWidgets import (QWidget, QVBoxLayout, QHBoxLayout, QGroupBox, QComboBox,
QLabel, QPushButton, QSpacerItem,
QSlider, QLineEdit, QMessageBox, QFileDialog)
from PyQt5.QtCore import QCoreApplication, Qt
from PyQt5.QtGui import QIcon, QPixmap
import numpy as np
import matplotlib.pyplot as plt
@ -32,14 +37,9 @@ from matplotlib.colors import LogNorm
from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas
from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolBar
from PyQt5.QtWidgets import (
QWidget, QVBoxLayout, QHBoxLayout, QGroupBox, QComboBox,
QLabel, QPushButton, QSpacerItem, QSlider, QLineEdit,
QMessageBox, QFileDialog
)
from os import chdir
from PyQt5.QtCore import QCoreApplication, Qt
from PyQt5.QtGui import QIcon, QPixmap
from copy import deepcopy
from View.checkable_combobox import CheckableComboBox
@ -1671,81 +1671,96 @@ class AcousticInversionTab(QWidget):
self.figure_measured_vs_inverted_sand.canvas.draw_idle()
def save_result_in_excel_file(self):
if self.combobox_acoustic_data_choice.count() > 0:
name = QFileDialog.getSaveFileName(
caption="Save As - Inversion results",
directory="",
filter="Excel Files (*.xlsx)",
options=QFileDialog.DontUseNativeDialog
)
caption="Save As - Inversion results", directory="", filter="Excel Files (*.xlsx)",
options=QFileDialog.DontUseNativeDialog)
if name[0]:
dirname = os.path.dirname(name[0])
filename = os.path.basename(name[0])
os.chdir(dirname)
results = []
dirname = "/".join(name[0].split("/")[:-1]) + "/"
filename = name[0].split("/")[-1]
chdir(dirname)
for k in range(self.combobox_acoustic_data_choice.count()):
if stg.time_cross_section[k].shape != (0,):
time_data = stg.time_cross_section
if stg.depth_cross_section[k].shape != (0,):
t = np.repeat(stg.time_cross_section[k][stg.frequency_for_inversion[1]],
stg.depth_cross_section[k].shape[1])
r = np.zeros((stg.depth_cross_section[k].shape[1] *stg.time_cross_section[k].shape[1],1))
for i in range(stg.time_cross_section[k].shape[1]):
for j in range(stg.depth_cross_section[k].shape[1]):
r[i * stg.depth_cross_section[k].shape[1] + j] = (
stg.depth_cross_section[k][int(stg.frequency_for_inversion[1]), j])
if stg.SSC_fine[k].shape == (0,):
stg.SSC_fine[k] = np.zeros(r.shape[0])
if stg.SSC_sand[k].shape == (0,):
stg.SSC_sand[k] = np.zeros(r.shape[0])
else:
t = np.repeat(stg.time_cross_section[k][stg.frequency_for_inversion[1]], stg.depth[k].shape[1])
r = np.zeros((stg.depth[k].shape[1] * stg.time_cross_section[k].shape[1], 1))
for i in range(stg.time_cross_section[k].shape[1]):
for j in range(stg.depth[k].shape[1]):
r[i * stg.depth[k].shape[1] + j] = (
stg.depth[k][int(stg.frequency_for_inversion[1]), j])
if stg.SSC_fine[k].shape == (0,):
stg.SSC_fine[k] = np.zeros(r.shape[0])
if stg.SSC_sand[k].shape == (0,):
stg.SSC_sand[k] = np.zeros(r.shape[0])
else:
time_data = stg.time
if stg.depth_cross_section[k].shape != (0,):
depth_data = stg.depth_cross_section
else:
depth_data = stg.depth
if stg.depth_cross_section[k].shape != (0,):
t = np.repeat(stg.time[k][stg.frequency_for_inversion[1]], stg.depth_cross_section[k].shape[1])
r = np.zeros((stg.depth_cross_section[k].shape[1] * stg.time[k].shape[1], 1))
for i in range(stg.time[k].shape[1]):
for j in range(stg.depth_cross_section[k].shape[1]):
r[i * stg.depth_cross_section[k].shape[1] + j] = (
stg.depth_cross_section[k][int(stg.frequency_for_inversion[1]), j])
if stg.SSC_fine[k].shape == (0,):
stg.SSC_fine[k] = np.zeros(r.shape[0])
if stg.SSC_sand[k].shape == (0,):
stg.SSC_sand[k] = np.zeros(r.shape[0])
else:
t = np.repeat(stg.time[k][stg.frequency_for_inversion[1]], stg.depth[k].shape[1])
r = np.zeros(stg.depth[k].shape[1] * stg.time[k].shape[1])
for i in range(stg.time[k].shape[1]):
for j in range(stg.depth[k].shape[1]):
r[i * stg.depth[k].shape[1] + j] = (
stg.depth[k][int(stg.frequency_for_inversion[1]), j])
if stg.SSC_fine[k].shape == (0,):
stg.SSC_fine[k] = np.zeros(r.shape[0])
if stg.SSC_sand[k].shape == (0,):
stg.SSC_sand[k] = np.zeros(r.shape[0])
exec("result_" + str(k) + "= pd.DataFrame({'Time (sec)': t," +
"'Depth (m)': r," +
"'SSC_fine (g/L)': stg.SSC_fine[" + str(k) + "].reshape(t.shape[0])," +
"'SSC_sand (g/L)': stg.SSC_sand[" + str(k) + "].reshape(t.shape[0])})")
t = np.repeat(
time_data[k][stg.frequency_for_inversion[1]],
depth_data[k].shape[1]
)
r = np.zeros(
depth_data[k].shape[1] * time_data[k].shape[1]
)
for i in range(time_data[k].shape[1]):
for j in range(depth_data[k].shape[1]):
r_id = i * depth_data[k].shape[1] + j
r[r_id] = (
depth_data[k][
int(stg.frequency_for_inversion[1]), j
]
)
if stg.SSC_fine[k].shape == (0,):
stg.SSC_fine[k] = np.zeros(r.shape[0])
if stg.SSC_sand[k].shape == (0,):
stg.SSC_sand[k] = np.zeros(r.shape[0])
results.append(
pd.DataFrame(
{
'Time (sec)': list(t),
'Depth (m)': list(r),
'SSC_fine (g/L)': list(
stg.SSC_fine[k].reshape(t.shape[0])
),
'SSC_sand (g/L)': list(
stg.SSC_sand[k].reshape(t.shape[0])
),
}
)
)
if os.path.splitext(filename)[1] != ".xlsx":
filename += ".xlsx"
with pd.ExcelWriter(
os.path.join(dirname, filename)
) as writer:
with pd.ExcelWriter(dirname + filename + '.xlsx') as writer:
for k in range(self.combobox_acoustic_data_choice.count()):
results[k].to_excel(
writer, index=False,
engine='xlsxwriter', na_rep='NA',
sheet_name=stg.data_preprocessed[k],
)
eval("result_" + str(k) + ".to_excel(writer, index=False, " +
"engine='xlsxwriter', na_rep='NA', " +
"sheet_name=stg.data_preprocessed[" + str(k) + "])")

View File

@ -147,14 +147,12 @@ class Ui_MainWindow(object):
icon6.addPixmap(QtGui.QPixmap("icons/en.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
self.actionEnglish.setIcon(icon6)
self.actionEnglish.setObjectName("actionEnglish")
self.actionEnglish.setEnabled(False)
self.actionFrench = QtWidgets.QAction(self.mainwindow)
icon7 = QtGui.QIcon()
icon7.addPixmap(QtGui.QPixmap("icons/fr.png"), QtGui.QIcon.Normal, QtGui.QIcon.Off)
self.actionFrench.setIcon(icon7)
self.actionFrench.setObjectName("actionFrench")
self.actionFrench.setEnabled(False)
self.action_ABSCalibrationConstant = QtWidgets.QAction(self.mainwindow)
self.action_ABSCalibrationConstant.setText("ABS constant calibration kt")
@ -270,10 +268,7 @@ class Ui_MainWindow(object):
)
def save(self):
if stg.dirname_save_as:
UpdateTableForSave()
else:
self.save_as()
UpdateTableForSave()
def open(self):
reader = ReadTableForOpen()

View File

@ -1716,18 +1716,14 @@ class SedimentCalibrationTab(QWidget):
self.animaiton_groupbox_compute.start()
def import_calibration_file(self):
filename = QFileDialog.getOpenFileName(
self, "Open calibration",
[
stg.path_calibration_file
if stg.path_calibration_file
else stg.path_BS_raw_data[-1]
if self.combobox_acoustic_data_choice.count() > 0
else ""
][0],
[stg.path_calibration_file if stg.path_calibration_file else
stg.path_BS_raw_data[
-1] if self.combobox_acoustic_data_choice.count() > 0 else ""][0],
"Calibration file (*.xls, *.ods, *csv)",
options=QFileDialog.DontUseNativeDialog
)
options=QFileDialog.DontUseNativeDialog)
dir_name = os.path.dirname(filename[0])
name = os.path.basename(filename[0])
@ -1740,188 +1736,114 @@ class SedimentCalibrationTab(QWidget):
self.lineEdit_import_calibration.setToolTip(dir_name)
self.compute_depth_2D()
self.read_calibration_file_and_fill_parameter()
def update_label_freq1_for_calibration(self):
self.label_freq1.clear()
self.label_freq1.setText(
str(self.combobox_freq1.currentText())
)
self.label_freq1.setText(str(self.combobox_freq1.currentText()))
def update_label_freq2_for_calibration(self):
self.label_freq2.clear()
self.label_freq2.setText(
self.combobox_freq2.currentText()
)
self.label_freq2.setText(self.combobox_freq2.currentText())
def update_label_kt_value_for_calibration(self):
print("self.combobox_freq1.currentIndex() ",
self.combobox_freq1.currentIndex(),
self.combobox_freq1.currentText())
freq_1 = self.combobox_freq1.currentIndex()
freq_2 = self.combobox_freq2.currentIndex()
self.label_kt_freq1.clear()
if stg.kt_corrected[freq_1] != stg.kt_read[freq_1]:
self.label_kt_freq1.setText(
str('%.4f' % stg.kt_corrected[freq_1])
)
print("self.combobox_freq1.currentIndex() ", self.combobox_freq1.currentIndex(), self.combobox_freq1.currentText())
if stg.kt_corrected[self.combobox_freq1.currentIndex()] != stg.kt_read[self.combobox_freq1.currentIndex()]:
self.label_kt_freq1.setText(str('%.4f' % stg.kt_corrected[self.combobox_freq1.currentIndex()]))
else:
self.label_kt_freq1.setText(
str('%.4f' % stg.kt_read[freq_1])
)
self.label_kt_freq1.setText(str('%.4f' % stg.kt_read[self.combobox_freq1.currentIndex()]))
self.label_kt_freq2.clear()
if stg.kt_corrected[freq_2] != stg.kt_read[freq_2]:
self.label_kt_freq2.setText(
str('%.4f' % stg.kt_corrected[freq_2])
)
if stg.kt_corrected[self.combobox_freq2.currentIndex()] != stg.kt_read[self.combobox_freq2.currentIndex()]:
self.label_kt_freq2.setText(str('%.4f' % stg.kt_corrected[self.combobox_freq2.currentIndex()]))
else:
self.label_kt_freq2.setText(
str('%.4f' % stg.kt_read[freq_2])
)
self.label_kt_freq2.setText(str('%.4f' % stg.kt_read[self.combobox_freq2.currentIndex()]))
def read_calibration_file_and_fill_parameter(self):
if self.combobox_acoustic_data_choice.count() == 0:
msgBox = QMessageBox()
msgBox.setWindowTitle("Calibration import error")
msgBox.setIconPixmap(
QPixmap(
self._path_icon("no_approved.png")
).scaledToHeight(32, Qt.SmoothTransformation)
)
QPixmap(self._path_icon("no_approved.png")).scaledToHeight(32, Qt.SmoothTransformation))
msgBox.setText("Update data before importing calibration")
msgBox.setStandardButtons(QMessageBox.Ok)
msgBox.exec()
elif stg.filename_calibration_file == "":
pass
else:
# --- Read calibration file ---
data = pd.read_csv(os.path.join(stg.path_calibration_file, stg.filename_calibration_file), header=0, index_col=0)
data = pd.read_csv(stg.path_calibration_file + "/" + stg.filename_calibration_file, header=0, index_col=0)
# --- Fill spinboxes of calibration parameter ---
self.label_temperature.clear()
self.label_temperature.setText(
"T = " + str(stg.temperature) + " °C"
)
self.label_temperature.setText("T = " + str(stg.temperature) + " °C")
self.label_freq1.clear()
self.label_freq1.setText(data.columns[0])
data_id = self.combobox_acoustic_data_choice.currentIndex()
index_freq1 = np.where(
np.asarray(
stg.freq_text[data_id]
) == data.columns[0]
)[0][0]
index_freq1 = np.where(np.asarray(stg.freq_text[self.combobox_acoustic_data_choice.currentIndex()]) ==
data.columns[0])[0][0]
stg.frequencies_for_calibration.clear()
stg.frequencies_for_calibration.append(
(
stg.freq[data_id][index_freq1],
index_freq1
)
)
stg.frequencies_for_calibration.append((stg.freq[self.combobox_acoustic_data_choice.currentIndex()][
index_freq1],
index_freq1))
self.label_freq2.clear()
self.label_freq2.setText(data.columns[1])
index_freq2 = np.where(
np.asarray(
stg.freq_text[data_id]
) == data.columns[1]
)[0][0]
stg.frequencies_for_calibration.append(
(
stg.freq[data_id][index_freq2],
index_freq2
)
)
index_freq2 = np.where(np.asarray(stg.freq_text[self.combobox_acoustic_data_choice.currentIndex()]) ==
data.columns[1])[0][0]
stg.frequencies_for_calibration.append((stg.freq[self.combobox_acoustic_data_choice.currentIndex()][
index_freq2],
index_freq2))
stg.frequency_for_inversion = tuple()
stg.frequency_for_inversion = (
stg.freq[data_id][index_freq2],
index_freq2
)
stg.frequency_for_inversion = (stg.freq[self.combobox_acoustic_data_choice.currentIndex()][index_freq2],
index_freq2)
self.lineEdit_ks_freq1.clear()
self.lineEdit_ks_freq1.setText(
str("%.5f" % float(data.iloc[0][0]))
)
self.lineEdit_ks_freq1.setText(str("%.5f" % float(data.iloc[0][0])))
self.lineEdit_ks_freq2.clear()
self.lineEdit_ks_freq2.setText(
str("%.5f" % float(data.iloc[0][1]))
)
self.lineEdit_ks_freq2.setText(str("%.5f" % float(data.iloc[0][1])))
stg.ks.clear()
stg.ks = [
float(self.lineEdit_ks_freq1.text()),
float(self.lineEdit_ks_freq2.text())
]
stg.ks = [float(self.lineEdit_ks_freq1.text()), float(self.lineEdit_ks_freq2.text())]
self.lineEdit_sv_freq1.clear()
self.lineEdit_sv_freq1.setText(
str("%.5f" % float(data.iloc[1][0]))
)
self.lineEdit_sv_freq1.setText(str("%.5f" % float(data.iloc[1][0])))
self.lineEdit_sv_freq2.clear()
self.lineEdit_sv_freq2.setText(
str("%.5f" % float(data.iloc[1][1]))
)
self.lineEdit_sv_freq2.setText(str("%.5f" % float(data.iloc[1][1])))
stg.sv.clear()
stg.sv = [
float(self.lineEdit_sv_freq1.text()),
float(self.lineEdit_sv_freq2.text())
]
stg.sv = [float(self.lineEdit_sv_freq1.text()), float(self.lineEdit_sv_freq2.text())]
self.lineEdit_X.clear()
self.lineEdit_X.setText(
str("%.2f" % float(data.iloc[2][0]))
)
self.lineEdit_X.setText(str("%.2f" % float(data.iloc[2][0])))
stg.X_exponent.clear()
stg.X_exponent.append(float(self.lineEdit_X.text()))
self.lineEdit_alphas_freq1.clear()
self.lineEdit_alphas_freq1.setText(
str("%.5f" % float(data.iloc[3][0]))
)
self.lineEdit_alphas_freq1.setText(str("%.5f" % float(data.iloc[3][0])))
self.lineEdit_alphas_freq2.clear()
self.lineEdit_alphas_freq2.setText(
str("%.5f" % float(data.iloc[3][1]))
)
self.lineEdit_alphas_freq2.setText(str("%.5f" % float(data.iloc[3][1])))
stg.alpha_s.clear()
stg.alpha_s = [
float(self.lineEdit_alphas_freq1.text()),
float(self.lineEdit_alphas_freq2.text())
]
stg.alpha_s = [float(self.lineEdit_alphas_freq1.text()), float(self.lineEdit_alphas_freq2.text())]
self.lineEdit_zeta_freq1.clear()
self.lineEdit_zeta_freq1.setText(
str("%.5f" % float(data.iloc[4][0]))
)
self.lineEdit_zeta_freq1.setText(str("%.5f" % float(data.iloc[4][0])))
self.lineEdit_zeta_freq2.clear()
self.lineEdit_zeta_freq2.setText(
str("%.5f" % float(data.iloc[4][1]))
)
self.lineEdit_zeta_freq2.setText(str("%.5f" % float(data.iloc[4][1])))
stg.zeta.clear()
stg.zeta = [
float(self.lineEdit_zeta_freq1.text()),
float(self.lineEdit_zeta_freq2.text())
]
stg.zeta = [float(self.lineEdit_zeta_freq1.text()), float(self.lineEdit_zeta_freq2.text())]
self.compute_kt2D_kt3D()
self.compute_J_cross_section()
@ -2009,8 +1931,8 @@ class SedimentCalibrationTab(QWidget):
self.compute_zeta()
def compute_ks(self):
data_id = self.combobox_acoustic_data_choice.currentIndex()
# --- Compute ks ---
psd_number_of_particles = (
self.inv_hc.compute_particle_size_distribution_in_number_of_particles(
num_sample=stg.sand_sample_target[0][1],
@ -2021,13 +1943,17 @@ class SedimentCalibrationTab(QWidget):
ks_freq1 = self.inv_hc.ks(
proba_num=psd_number_of_particles,
freq=stg.freq[data_id][self.combobox_freq1.currentIndex()],
freq=stg.freq[self.combobox_acoustic_data_choice.currentIndex()][
self.combobox_freq1.currentIndex()
],
C=stg.water_velocity
)
ks_freq2 = self.inv_hc.ks(
proba_num=psd_number_of_particles,
freq=stg.freq[data_id][self.combobox_freq2.currentIndex()],
freq=stg.freq[self.combobox_acoustic_data_choice.currentIndex()][
self.combobox_freq2.currentIndex()
],
C=stg.water_velocity
)
@ -2035,12 +1961,12 @@ class SedimentCalibrationTab(QWidget):
logger.debug(
"ks for frequency of "
+ f"{stg.freq[data_id][self.combobox_freq1.currentIndex()]} : "
+ f"{stg.freq[self.combobox_acoustic_data_choice.currentIndex()][self.combobox_freq1.currentIndex()]} : "
+ f"{ks_freq1} m/kg^0.5 \n"
)
logger.debug(
"ks for frequency of "
+ f"{stg.freq[data_id][self.combobox_freq2.currentIndex()]} : " +
+ f"{stg.freq[self.combobox_acoustic_data_choice.currentIndex()][self.combobox_freq2.currentIndex()]} : " +
f"{ks_freq2} m/kg^0.5"
)
@ -2051,21 +1977,13 @@ class SedimentCalibrationTab(QWidget):
self.lineEdit_ks_freq2.setText(str("%.5f" % ks_freq2))
def compute_sv(self):
data_id = self.combobox_acoustic_data_choice.currentIndex()
sv_freq1 = self.inv_hc.sv(ks=stg.ks[0], M_sand=stg.Ctot_sand[stg.sand_sample_target[0][1]])
sv_freq2 = self.inv_hc.sv(ks=stg.ks[1], M_sand=stg.Ctot_sand[stg.sand_sample_target[0][1]])
stg.sv = [sv_freq1, sv_freq2]
print(
f"sv for frequency of {stg.freq[data_id][self.combobox_freq1.currentIndex()]}"
+ f" : {sv_freq1:.8f} /m \n"
)
print(
f"sv for frequency of {stg.freq[data_id][self.combobox_freq2.currentIndex()]}"
+ f" : {sv_freq2:.8f} /m"
)
print(f"sv for frequency of {stg.freq[self.combobox_acoustic_data_choice.currentIndex()][self.combobox_freq1.currentIndex()]} : {sv_freq1:.8f} /m \n")
print(f"sv for frequency of {stg.freq[self.combobox_acoustic_data_choice.currentIndex()][self.combobox_freq2.currentIndex()]} : {sv_freq2:.8f} /m")
self.lineEdit_sv_freq1.clear()
self.lineEdit_sv_freq1.setText(str("%.5f" % sv_freq1))
@ -2074,13 +1992,9 @@ class SedimentCalibrationTab(QWidget):
self.lineEdit_sv_freq2.setText(str("%.5f" % sv_freq2))
def compute_X(self):
data_id = self.combobox_acoustic_data_choice.currentIndex()
X_exponent = self.inv_hc.X_exponent(
freq1=stg.freq[data_id][self.combobox_freq1.currentIndex()],
freq2=stg.freq[data_id][self.combobox_freq2.currentIndex()],
sv_freq1=stg.sv[0], sv_freq2=stg.sv[1]
)
X_exponent = self.inv_hc.X_exponent(freq1=stg.freq[self.combobox_acoustic_data_choice.currentIndex()][self.combobox_freq1.currentIndex()],
freq2=stg.freq[self.combobox_acoustic_data_choice.currentIndex()][self.combobox_freq2.currentIndex()],
sv_freq1=stg.sv[0], sv_freq2=stg.sv[1])
stg.X_exponent.clear()
stg.X_exponent.append(X_exponent)
@ -2123,90 +2037,190 @@ class SedimentCalibrationTab(QWidget):
)
def compute_J_cross_section(self):
lst_bs_data = [
stg.BS_stream_bed_pre_process_average,
stg.BS_stream_bed_pre_process_SNR,
stg.BS_stream_bed,
stg.BS_cross_section_pre_process_average,
stg.BS_cross_section_pre_process_SNR,
stg.BS_cross_section,
stg.BS_raw_data_pre_process_average,
stg.BS_raw_data_pre_process_SNR,
stg.BS_raw_data
]
for i in range(self.combobox_acoustic_data_choice.count()):
J_cross_section_freq1 = np.array([])
J_cross_section_freq2 = np.array([])
for data in lst_bs_data:
if data[i].shape != (0,):
bs_data = data
break
# --- Compute J ---
if stg.BS_stream_bed_pre_process_average[i].shape != (0,):
print(f"{stg.depth_2D[i].shape}")
print(f"{stg.depth_2D[i]}")
J_cross_section_freq1 = self.inv_hc.j_cross_section(
BS=stg.BS_stream_bed_pre_process_average[i][
stg.frequencies_for_calibration[0][1], :, :],
r2D=stg.depth_2D[i][stg.frequencies_for_calibration[0][1],
:, :],
kt=stg.kt3D[i][stg.frequencies_for_calibration[0][1], :, :])
J_cross_section_freq1 = self.inv_hc.j_cross_section(
BS = bs_data[i][
stg.frequencies_for_calibration[0][1], :, :
],
r2D = stg.depth_2D[i][
stg.frequencies_for_calibration[0][1], :, :
],
kt = stg.kt3D[i][
stg.frequencies_for_calibration[0][1], :, :
]
)
J_cross_section_freq2 = self.inv_hc.j_cross_section(
BS=stg.BS_stream_bed_pre_process_average[i][
stg.frequencies_for_calibration[1][1], :, :],
r2D=stg.depth_2D[i][stg.frequencies_for_calibration[1][1],
:, :],
kt=stg.kt3D[i][stg.frequencies_for_calibration[1][1], :, :])
J_cross_section_freq2 = self.inv_hc.j_cross_section(
BS = bs_data[i][
stg.frequencies_for_calibration[1][1], :, :
],
r2D = stg.depth_2D[i][
stg.frequencies_for_calibration[1][1], :, :
],
kt = stg.kt3D[i][
stg.frequencies_for_calibration[1][1], :, :
]
)
elif stg.BS_stream_bed_pre_process_SNR[i].shape != (0,):
J_cross_section_freq1 = self.inv_hc.j_cross_section(
BS=stg.BS_stream_bed_pre_process_SNR[i][
stg.frequencies_for_calibration[0][1], :, :],
r2D=stg.depth_2D[i][stg.frequencies_for_calibration[0][1],
:, :],
kt=stg.kt3D[i][stg.frequencies_for_calibration[0][1], :, :])
J_cross_section_freq2 = self.inv_hc.j_cross_section(
BS=stg.BS_stream_bed_pre_process_SNR[i][
stg.frequencies_for_calibration[1][1], :, :],
r2D=stg.depth_2D[i][stg.frequencies_for_calibration[1][1],
:, :],
kt=stg.kt3D[i][stg.frequencies_for_calibration[1][1], :, :])
elif stg.BS_stream_bed[i].shape != (0,):
J_cross_section_freq1 = self.inv_hc.j_cross_section(
BS=stg.BS_stream_bed[i][stg.frequencies_for_calibration[0][1], :, :],
r2D=stg.depth_2D[i][stg.frequencies_for_calibration[0][1], :, :],
kt=stg.kt3D[i][stg.frequencies_for_calibration[0][1], :, :])
J_cross_section_freq2 = self.inv_hc.j_cross_section(
BS=stg.BS_stream_bed[i][
stg.frequencies_for_calibration[1][1], :, :],
r2D=stg.depth_2D[i][stg.frequencies_for_calibration[1][1], :, :],
kt=stg.kt3D[i][stg.frequencies_for_calibration[1][1], :, :])
elif stg.BS_cross_section_pre_process_average[i].shape != (0,):
J_cross_section_freq1 = self.inv_hc.j_cross_section(
BS=stg.BS_cross_section_pre_process_average[i][
stg.frequencies_for_calibration[0][1], :, :],
r2D=stg.depth_2D[i][stg.frequencies_for_calibration[0][1],
:, :],
kt=stg.kt3D[i][stg.frequencies_for_calibration[0][1], :, :])
J_cross_section_freq2 = self.inv_hc.j_cross_section(
BS=stg.BS_cross_section_pre_process_average[i][
stg.frequencies_for_calibration[1][1], :, :],
r2D=stg.depth_2D[i][stg.frequencies_for_calibration[1][1],
:, :],
kt=stg.kt3D[i][stg.frequencies_for_calibration[1][1], :, :])
elif stg.BS_cross_section_pre_process_SNR[i].shape != (0,):
J_cross_section_freq1 = self.inv_hc.j_cross_section(
BS=stg.BS_cross_section_pre_process_SNR[i][
stg.frequencies_for_calibration[0][1], :, :],
r2D=stg.depth_2D[i][stg.frequencies_for_calibration[0][1],
:, :],
kt=stg.kt3D[i][stg.frequencies_for_calibration[0][1], :, :])
J_cross_section_freq2 = self.inv_hc.j_cross_section(
BS=stg.BS_cross_section_pre_process_SNR[i][
stg.frequencies_for_calibration[1][1], :, :],
r2D=stg.depth_2D[i][stg.frequencies_for_calibration[1][1],
:, :],
kt=stg.kt3D[i][stg.frequencies_for_calibration[1][1], :, :])
elif stg.BS_cross_section[i].shape != (0,):
J_cross_section_freq1 = self.inv_hc.j_cross_section(
BS=stg.BS_cross_section[i][
stg.frequencies_for_calibration[0][1], :, :],
r2D=stg.depth_2D[i, :, :][stg.frequencies_for_calibration[0][1], :, :],
kt=stg.kt3D[i][stg.frequencies_for_calibration[0][1], :, :])
J_cross_section_freq2 = self.inv_hc.j_cross_section(
BS=stg.BS_cross_section[i][
stg.frequencies_for_calibration[1][1], :, :],
r2D=stg.depth_2D[i, :, :][stg.frequencies_for_calibration[1][1], :, :],
kt=stg.kt3D[i][stg.frequencies_for_calibration[1][1], :, :])
elif stg.BS_raw_data_pre_process_average[i].shape != (0,):
J_cross_section_freq1 = self.inv_hc.j_cross_section(
BS=stg.BS_raw_data_pre_process_average[i][
stg.frequencies_for_calibration[0][1], :, :],
r2D=stg.depth_2D[i][stg.frequencies_for_calibration[0][1], :, :],
kt=stg.kt3D[i][stg.frequencies_for_calibration[0][1], :, :])
J_cross_section_freq2 = self.inv_hc.j_cross_section(
BS=stg.BS_raw_data_pre_process_average[i][
stg.frequencies_for_calibration[1][1], :, :],
r2D=stg.depth_2D[i][stg.frequencies_for_calibration[1][1], :, :],
kt=stg.kt3D[i][stg.frequencies_for_calibration[1][1], :, :])
elif stg.BS_raw_data_pre_process_SNR[i].shape != (0,):
J_cross_section_freq1 = self.inv_hc.j_cross_section(
BS=stg.BS_raw_data_pre_process_SNR[i][
stg.frequencies_for_calibration[0][1], :, :],
r2D=stg.depth_2D[i][stg.frequencies_for_calibration[0][1], :, :],
kt=stg.kt3D[i][stg.frequencies_for_calibration[0][1], :, :])
J_cross_section_freq2 = self.inv_hc.j_cross_section(
BS=stg.BS_raw_data_pre_process_SNR[i][
stg.frequencies_for_calibration[1][1], :, :],
r2D=stg.depth_2D[i][stg.frequencies_for_calibration[1][1], :, :],
kt=stg.kt3D[i][stg.frequencies_for_calibration[1][1], :, :])
elif stg.BS_raw_data:
J_cross_section_freq1 = self.inv_hc.j_cross_section(
BS=stg.BS_raw_data[i][
stg.frequencies_for_calibration[0][1], :, :],
r2D=stg.depth_2D[i][stg.frequencies_for_calibration[0][1], :, :],
kt=stg.kt3D[i][stg.frequencies_for_calibration[0][1], :, :])
J_cross_section_freq2 = self.inv_hc.j_cross_section(
BS=stg.BS_raw_data[i][
stg.frequencies_for_calibration[1][1], :, :],
r2D=stg.depth_2D[i][stg.frequencies_for_calibration[1][1], :, :],
kt=stg.kt3D[i][stg.frequencies_for_calibration[1][1], :, :])
stg.J_cross_section[i][0] = J_cross_section_freq1
stg.J_cross_section[i][1] = J_cross_section_freq2
def compute_alpha_s(self):
data_id = self.combobox_acoustic_data_choice.currentIndex()
freq_1 = self.combobox_freq1.currentIndex()
freq_2 = self.combobox_freq2.currentIndex()
depth_data = stg.depth
if stg.depth_cross_section[data_id].shape != (0,):
depth_data = stg.depth_cross_section
# --- Compute alpha_s ---
if stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
alpha_s_freq1 = self.inv_hc.alpha_s(
sv=stg.sv[0],
j_cross_section=stg.J_cross_section[data_id][0][
stg.sand_sample_target_indice[0][0],
stg.sand_sample_target_indice[0][1]
],
depth=depth_data[data_id][
freq_1, stg.sand_sample_target_indice[0][0]
],
alpha_w=stg.water_attenuation[data_id][freq_1]
)
alpha_s_freq1 = self.inv_hc.alpha_s(
sv=stg.sv[0],
j_cross_section=stg.J_cross_section[self.combobox_acoustic_data_choice.currentIndex()][0][
stg.sand_sample_target_indice[0][0], stg.sand_sample_target_indice[0][1]],
depth=stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][
self.combobox_freq1.currentIndex(), stg.sand_sample_target_indice[0][0]],
alpha_w=stg.water_attenuation[self.combobox_acoustic_data_choice.currentIndex()][
self.combobox_freq1.currentIndex()])
alpha_s_freq2 = self.inv_hc.alpha_s(
sv=stg.sv[1],
j_cross_section=stg.J_cross_section[data_id][1][
stg.sand_sample_target_indice[1][0],
stg.sand_sample_target_indice[1][1]
],
depth=depth_data[data_id][
freq_2, stg.sand_sample_target_indice[1][0]
],
alpha_w=stg.water_attenuation[data_id][freq_2]
)
alpha_s_freq2 = self.inv_hc.alpha_s(
sv=stg.sv[1],
j_cross_section=stg.J_cross_section[self.combobox_acoustic_data_choice.currentIndex()][1][
stg.sand_sample_target_indice[1][0], stg.sand_sample_target_indice[1][1]],
depth=stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][
self.combobox_freq2.currentIndex(), stg.sand_sample_target_indice[1][0]],
alpha_w=stg.water_attenuation[self.combobox_acoustic_data_choice.currentIndex()][
self.combobox_freq2.currentIndex()])
else:
alpha_s_freq1 = self.inv_hc.alpha_s(
sv=stg.sv[0],
j_cross_section=stg.J_cross_section[self.combobox_acoustic_data_choice.currentIndex()][0][
stg.sand_sample_target_indice[0][0], stg.sand_sample_target_indice[0][1]],
depth=stg.depth[self.combobox_acoustic_data_choice.currentIndex()][
self.combobox_freq1.currentIndex(), stg.sand_sample_target_indice[0][0]],
alpha_w=stg.water_attenuation[self.combobox_acoustic_data_choice.currentIndex()][
self.combobox_freq1.currentIndex()])
alpha_s_freq2 = self.inv_hc.alpha_s(
sv=stg.sv[1],
j_cross_section=stg.J_cross_section[self.combobox_acoustic_data_choice.currentIndex()][1][
stg.sand_sample_target_indice[1][0], stg.sand_sample_target_indice[1][1]],
depth=stg.depth[self.combobox_acoustic_data_choice.currentIndex()][
self.combobox_freq2.currentIndex(), stg.sand_sample_target_indice[1][0]],
alpha_w=stg.water_attenuation[self.combobox_acoustic_data_choice.currentIndex()][
self.combobox_freq2.currentIndex()])
stg.alpha_s = [alpha_s_freq1, alpha_s_freq2]

View File

@ -447,8 +447,8 @@ class SignalProcessingTab(QWidget):
# --------------------------------------------------------------------------------------------------------------
self.pushbutton_update.clicked.connect(self.update_SignalPreprocessingTab)
# self.pushbutton_update.clicked.connect(self.compute_average_profile_tail)
# self.pushbutton_update.clicked.connect(self.plot_averaged_profile_tail)
self.pushbutton_update.clicked.connect(self.compute_average_profile_tail)
self.pushbutton_update.clicked.connect(self.plot_averaged_profile_tail)
self.combobox_acoustic_data_choice.currentIndexChanged.connect(self.combobox_acoustic_data_choice_change_index)
@ -501,39 +501,26 @@ class SignalProcessingTab(QWidget):
- the user remove a file (in the list widget) in the first tab (Acoustic data), so that the combobox
of data to be processed is updated,
- the user change the limits of one or all the records in the first tab (Acoustic data) """
if len(stg.filename_BS_raw_data) == 0:
msgBox = QMessageBox()
msgBox.setWindowTitle("Compute noise from profile tail error")
msgBox.setIcon(QMessageBox.Warning)
msgBox.setText("Download acoustic data in previous tab before updating data")
msgBox.setStandardButtons(QMessageBox.Ok)
msgBox.exec()
self.combobox_acoustic_data_choice.clear()
self.combobox_acoustic_data_choice.addItems(stg.filename_BS_raw_data)
else:
if stg.noise_method[self.combobox_acoustic_data_choice.currentIndex()] == 0:
self.combobox_acoustic_data_choice.clear()
self.combobox_acoustic_data_choice.addItems(stg.filename_BS_raw_data)
self.groupbox_download_noise_file.setChecked(True)
self.groupbox_compute_noise_from_profile_tail.setChecked(False)
self.groupbox_download_noise_file_toggle()
if stg.noise_method[self.combobox_acoustic_data_choice.currentIndex()] == 0:
elif stg.noise_method[self.combobox_acoustic_data_choice.currentIndex()] == 1:
self.groupbox_download_noise_file.setChecked(True)
self.groupbox_compute_noise_from_profile_tail.setChecked(False)
self.groupbox_download_noise_file_toggle()
self.groupbox_download_noise_file.setChecked(False)
self.groupbox_compute_noise_from_profile_tail.setChecked(True)
self.groupbox_option_profile_tail_toggle()
elif stg.noise_method[self.combobox_acoustic_data_choice.currentIndex()] == 1:
self.combobox_freq_noise_from_profile_tail.clear()
self.combobox_freq_noise_from_profile_tail.addItems(stg.freq_text[self.combobox_acoustic_data_choice.currentIndex()])
self.groupbox_download_noise_file.setChecked(False)
self.groupbox_compute_noise_from_profile_tail.setChecked(True)
self.groupbox_option_profile_tail_toggle()
self.combobox_freq_noise_from_profile_tail.clear()
self.combobox_freq_noise_from_profile_tail.addItems(stg.freq_text[self.combobox_acoustic_data_choice.currentIndex()])
self.combobox_acoustic_data_choice.currentIndexChanged.connect(self.combobox_acoustic_data_choice_change_index)
self.compute_average_profile_tail()
self.plot_averaged_profile_tail()
self.combobox_acoustic_data_choice.currentIndexChanged.connect(self.combobox_acoustic_data_choice_change_index)
def activate_list_of_pre_processed_data(self):
for i in range(self.combobox_acoustic_data_choice.count()):
@ -667,65 +654,45 @@ class SignalProcessingTab(QWidget):
# --- Plot averaged signal ---
if len(stg.filename_BS_raw_data) == 0:
if stg.BS_mean[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
msgBox = QMessageBox()
msgBox.setWindowTitle("Compute noise from profile tail error")
msgBox.setIcon(QMessageBox.Warning)
msgBox.setText("Download acoustic data in previous tab before computing noise from profile tail")
msgBox.setStandardButtons(QMessageBox.Ok)
msgBox.exec()
self.verticalLayout_groupbox_plot_profile_tail.removeWidget(self.canvas_profile_tail)
elif self.combobox_acoustic_data_choice.count() == 0:
self.fig_profile_tail, self.axis_profile_tail = plt.subplots(nrows=1, ncols=1, layout='constrained')
self.canvas_profile_tail = FigureCanvas(self.fig_profile_tail)
msgBox = QMessageBox()
msgBox.setWindowTitle("Compute noise from profile tail error")
msgBox.setIcon(QMessageBox.Warning)
msgBox.setText("Refresh acoustic data before computing noise from profile tail")
msgBox.setStandardButtons(QMessageBox.Ok)
msgBox.exec()
self.verticalLayout_groupbox_plot_profile_tail.addWidget(self.canvas_profile_tail)
else:
self.axis_profile_tail.plot(
-stg.depth[self.combobox_acoustic_data_choice.currentIndex()][self.combobox_freq_noise_from_profile_tail.currentIndex()],
stg.BS_mean[self.combobox_acoustic_data_choice.currentIndex()][self.combobox_freq_noise_from_profile_tail.currentIndex()],
color="blue", linewidth=1)
self.axis_profile_tail.plot(
-stg.depth[self.combobox_acoustic_data_choice.currentIndex()][
self.combobox_freq_noise_from_profile_tail.currentIndex()],
float(self.lineEdit_profile_tail_value.text().replace(",", ".")) *
np.ones(stg.depth[self.combobox_acoustic_data_choice.currentIndex()][
self.combobox_freq_noise_from_profile_tail.currentIndex()].shape[0]),
linestyle='dashed', linewidth=2, color='red')
if stg.BS_mean[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
self.axis_profile_tail.set_yscale('log')
self.axis_profile_tail.tick_params(axis='both', labelsize=8)
self.axis_profile_tail.text(.98, .03, "Depth (m)",
fontsize=8, fontweight='bold', fontname="Ubuntu", c="black", alpha=0.9,
horizontalalignment='right', verticalalignment='bottom', rotation='horizontal',
transform=self.axis_profile_tail.transAxes)
self.axis_profile_tail.text(.1, .45, "BS signal (v)",
fontsize=8, fontweight='bold', fontname="Ubuntu", c="black", alpha=0.9,
horizontalalignment='right', verticalalignment='bottom', rotation='vertical',
transform=self.axis_profile_tail.transAxes)
self.axis_profile_tail.text(.98, .85,
stg.freq_text[self.combobox_acoustic_data_choice.currentIndex()][
self.combobox_freq_noise_from_profile_tail.currentIndex()],
fontsize=10, fontweight='bold', fontname="Ubuntu", c="black", alpha=0.5,
horizontalalignment='right', verticalalignment='bottom',
transform=self.axis_profile_tail.transAxes)
self.verticalLayout_groupbox_plot_profile_tail.removeWidget(self.canvas_profile_tail)
self.fig_profile_tail, self.axis_profile_tail = plt.subplots(nrows=1, ncols=1, layout='constrained')
self.canvas_profile_tail = FigureCanvas(self.fig_profile_tail)
self.verticalLayout_groupbox_plot_profile_tail.addWidget(self.canvas_profile_tail)
self.axis_profile_tail.plot(
-stg.depth[self.combobox_acoustic_data_choice.currentIndex()][self.combobox_freq_noise_from_profile_tail.currentIndex()],
stg.BS_mean[self.combobox_acoustic_data_choice.currentIndex()][self.combobox_freq_noise_from_profile_tail.currentIndex()],
color="blue", linewidth=1)
self.axis_profile_tail.plot(
-stg.depth[self.combobox_acoustic_data_choice.currentIndex()][
self.combobox_freq_noise_from_profile_tail.currentIndex()],
float(self.lineEdit_profile_tail_value.text().replace(",", ".")) *
np.ones(stg.depth[self.combobox_acoustic_data_choice.currentIndex()][
self.combobox_freq_noise_from_profile_tail.currentIndex()].shape[0]),
linestyle='dashed', linewidth=2, color='red')
self.axis_profile_tail.set_yscale('log')
self.axis_profile_tail.tick_params(axis='both', labelsize=8)
self.axis_profile_tail.text(.98, .03, "Depth (m)",
fontsize=8, fontweight='bold', fontname="Ubuntu", c="black", alpha=0.9,
horizontalalignment='right', verticalalignment='bottom', rotation='horizontal',
transform=self.axis_profile_tail.transAxes)
self.axis_profile_tail.text(.1, .45, "BS signal (v)",
fontsize=8, fontweight='bold', fontname="Ubuntu", c="black", alpha=0.9,
horizontalalignment='right', verticalalignment='bottom', rotation='vertical',
transform=self.axis_profile_tail.transAxes)
self.axis_profile_tail.text(.98, .85,
stg.freq_text[self.combobox_acoustic_data_choice.currentIndex()][
self.combobox_freq_noise_from_profile_tail.currentIndex()],
fontsize=10, fontweight='bold', fontname="Ubuntu", c="black", alpha=0.5,
horizontalalignment='right', verticalalignment='bottom',
transform=self.axis_profile_tail.transAxes)
self.fig_profile_tail.canvas.draw_idle()
self.fig_profile_tail.canvas.draw_idle()
# ------------------------------------------------------
@ -755,87 +722,82 @@ class SignalProcessingTab(QWidget):
def clear_noise_data(self):
if len(stg.filename_BS_raw_data) == 0:
stg.BS_noise_raw_data[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.BS_noise_averaged_data[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.SNR_raw_data[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.SNR_cross_section[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.SNR_stream_bed[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.time_noise[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.noise_method[self.combobox_acoustic_data_choice.currentIndex()] = 0
stg.SNR_filter_value[self.combobox_acoustic_data_choice.currentIndex()] = 0
pass
stg.BS_raw_data_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.BS_raw_data_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
else:
stg.BS_cross_section_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.BS_cross_section_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.BS_noise_raw_data[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.BS_noise_averaged_data[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.SNR_raw_data[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.SNR_cross_section[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.SNR_stream_bed[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.time_noise[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.SNR_filter_value[self.combobox_acoustic_data_choice.currentIndex()] = 0
stg.BS_stream_bed_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.BS_stream_bed_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.BS_raw_data_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.BS_raw_data_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
if stg.noise_method[self.combobox_acoustic_data_choice.currentIndex()] == 0:
self.lineEdit_noise_file.clear()
stg.BS_cross_section_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.BS_cross_section_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
elif stg.noise_method[self.combobox_acoustic_data_choice.currentIndex()] == 1:
self.lineEdit_val1.clear()
self.lineEdit_val1.setText("0.00")
stg.BS_stream_bed_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
stg.BS_stream_bed_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = np.array([])
print("stg.noise_method[self.combobox_acoustic_data_choice.currentIndex()]", stg.noise_method[self.combobox_acoustic_data_choice.currentIndex()])
if stg.noise_method[self.combobox_acoustic_data_choice.currentIndex()] == 0:
self.lineEdit_noise_file.clear()
self.lineEdit_val2.clear()
self.lineEdit_val2.setText("0.00")
elif stg.noise_method[self.combobox_acoustic_data_choice.currentIndex()] == 1:
self.lineEdit_val1.clear()
self.lineEdit_val1.setText("0.00")
self.lineEdit_profile_tail_value.clear()
self.lineEdit_profile_tail_value.setText("0.0000")
self.lineEdit_val2.clear()
self.lineEdit_val2.setText("0.00")
self.verticalLayout_groupbox_plot_profile_tail.removeWidget(self.canvas_profile_tail)
self.canvas_profile_tail = FigureCanvas()
self.verticalLayout_groupbox_plot_profile_tail.addWidget(self.canvas_profile_tail)
self.lineEdit_profile_tail_value.clear()
self.lineEdit_profile_tail_value.setText("0.0000")
self.lineEdit_SNR_criterion.setText("0.00")
self.lineEdit_horizontal_average.setText("0.00")
self.verticalLayout_groupbox_plot_profile_tail.removeWidget(self.canvas_profile_tail)
self.canvas_profile_tail = FigureCanvas()
self.verticalLayout_groupbox_plot_profile_tail.addWidget(self.canvas_profile_tail)
# --- Clear SNR plot ---
self.verticalLayout_groupbox_plot_SNR.removeWidget(self.toolbar_SNR)
self.verticalLayout_groupbox_plot_SNR.removeWidget(self.scroll_SNR)
self.lineEdit_SNR_criterion.setText("0.00")
self.lineEdit_horizontal_average.setText("0.00")
self.canvas_SNR = FigureCanvas()
self.toolbar_SNR = NavigationToolBar(self.canvas_SNR, self)
self.scroll_SNR.setWidget(self.canvas_SNR)
# --- Clear SNR plot ---
self.verticalLayout_groupbox_plot_SNR.removeWidget(self.toolbar_SNR)
self.verticalLayout_groupbox_plot_SNR.removeWidget(self.scroll_SNR)
self.verticalLayout_groupbox_plot_SNR.addWidget(self.toolbar_SNR)
self.verticalLayout_groupbox_plot_SNR.addWidget(self.scroll_SNR)
self.canvas_SNR = FigureCanvas()
self.toolbar_SNR = NavigationToolBar(self.canvas_SNR, self)
self.scroll_SNR.setWidget(self.canvas_SNR)
# --- Clear BS plot ---
self.verticalLayout_groupbox_plot_pre_processed_data_2D_field.removeWidget(self.toolbar_BS)
self.verticalLayout_groupbox_plot_pre_processed_data_2D_field.removeWidget(self.scroll_BS)
self.verticalLayout_groupbox_plot_SNR.addWidget(self.toolbar_SNR)
self.verticalLayout_groupbox_plot_SNR.addWidget(self.scroll_SNR)
self.canvas_BS = FigureCanvas()
self.toolbar_BS = NavigationToolBar(self.canvas_BS, self)
self.scroll_BS.setWidget(self.canvas_BS)
# --- Clear BS plot ---
self.verticalLayout_groupbox_plot_pre_processed_data_2D_field.removeWidget(self.toolbar_BS)
self.verticalLayout_groupbox_plot_pre_processed_data_2D_field.removeWidget(self.scroll_BS)
self.verticalLayout_groupbox_plot_pre_processed_data_2D_field.addWidget(self.toolbar_BS)
self.verticalLayout_groupbox_plot_pre_processed_data_2D_field.addWidget(self.scroll_BS)
self.canvas_BS = FigureCanvas()
self.toolbar_BS = NavigationToolBar(self.canvas_BS, self)
self.scroll_BS.setWidget(self.canvas_BS)
self.combobox_frequency_profile.clear()
self.verticalLayout_groupbox_plot_pre_processed_data_2D_field.addWidget(self.toolbar_BS)
self.verticalLayout_groupbox_plot_pre_processed_data_2D_field.addWidget(self.scroll_BS)
self.verticalLayout_groupbox_plot_profile.removeWidget(self.toolbar_profile)
self.verticalLayout_groupbox_plot_profile.removeWidget(self.canvas_profile)
self.combobox_frequency_profile.clear()
self.canvas_profile = FigureCanvas()
self.toolbar_profile = NavigationToolBar(self.canvas_profile, self)
self.verticalLayout_groupbox_plot_profile.removeWidget(self.toolbar_profile)
self.verticalLayout_groupbox_plot_profile.removeWidget(self.canvas_profile)
self.verticalLayout_groupbox_plot_profile.addWidget(self.toolbar_profile)
self.verticalLayout_groupbox_plot_profile.addWidget(self.canvas_profile)
self.canvas_profile = FigureCanvas()
self.toolbar_profile = NavigationToolBar(self.canvas_profile, self)
self.slider.setValue(1)
self.slider.setMaximum(10)
self.verticalLayout_groupbox_plot_profile.addWidget(self.toolbar_profile)
self.verticalLayout_groupbox_plot_profile.addWidget(self.canvas_profile)
self.slider.setValue(1)
self.slider.setMaximum(10)
self.slider.setValue(0)
self.slider.setMaximum(10)
self.slider.setValue(0)
self.slider.setMaximum(10)
def open_dialog_box(self):
@ -1259,19 +1221,11 @@ class SignalProcessingTab(QWidget):
def remove_point_with_snr_filter(self):
if len(stg.filename_BS_raw_data) == 0:
msgBox = QMessageBox()
msgBox.setWindowTitle("Compute noise from profile tail error")
msgBox.setIcon(QMessageBox.Warning)
msgBox.setText("Download acoustic data in previous tab before applying SNR filter")
msgBox.setStandardButtons(QMessageBox.Ok)
msgBox.exec()
elif len(stg.BS_noise_raw_data) == 0:
if len(stg.BS_noise_raw_data) == 0:
msgBox = QMessageBox()
msgBox.setWindowTitle("SNR filter Error")
msgBox.setIcon(QMessageBox.Warning)
msgBox.setText("Define noise data (file or profile tail) before using SNR filter")
msgBox.setText("Load Noise data from acoustic data tab before using SNR filter")
msgBox.setStandardButtons(QMessageBox.Ok)
msgBox.exec()
@ -1550,123 +1504,105 @@ class SignalProcessingTab(QWidget):
def compute_averaged_BS_data(self):
if len(stg.filename_BS_raw_data) == 0:
msgBox = QMessageBox()
msgBox.setWindowTitle("Compute noise from profile tail error")
msgBox.setIcon(QMessageBox.Warning)
msgBox.setText("Download acoustic data in previous tab before applying SNR filter")
msgBox.setStandardButtons(QMessageBox.Ok)
msgBox.exec()
kernel_avg = np.ones(2 * int(float(self.lineEdit_horizontal_average.text().replace(",", "."))) + 1)
print(kernel_avg)
elif len(stg.BS_noise_raw_data) == 0:
msgBox = QMessageBox()
msgBox.setWindowTitle("SNR filter Error")
msgBox.setIcon(QMessageBox.Warning)
msgBox.setText("Define noise data (file or profile tail) before using SNR filter")
msgBox.setStandardButtons(QMessageBox.Ok)
msgBox.exec()
stg.Nb_cells_to_average_BS_signal[self.combobox_acoustic_data_choice.currentIndex()] = (
float(self.lineEdit_horizontal_average.text().replace(",", ".")))
if stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
if stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
x_time = stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()]
y_depth = stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()]
elif stg.depth[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
x_time = stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()]
y_depth = stg.depth[self.combobox_acoustic_data_choice.currentIndex()]
else:
kernel_avg = np.ones(2 * int(float(self.lineEdit_horizontal_average.text().replace(",", "."))) + 1)
print(kernel_avg)
if stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
stg.Nb_cells_to_average_BS_signal[self.combobox_acoustic_data_choice.currentIndex()] = (
float(self.lineEdit_horizontal_average.text().replace(",", ".")))
x_time = stg.time[self.combobox_acoustic_data_choice.currentIndex()]
y_depth = stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()]
if stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
elif stg.depth[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
if stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
x_time = stg.time[self.combobox_acoustic_data_choice.currentIndex()]
y_depth = stg.depth[self.combobox_acoustic_data_choice.currentIndex()]
x_time = stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()]
y_depth = stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()]
if stg.BS_stream_bed_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
elif stg.depth[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
stg.BS_stream_bed_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = (deepcopy(
stg.BS_stream_bed_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()]))
x_time = stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()]
y_depth = stg.depth[self.combobox_acoustic_data_choice.currentIndex()]
for f, _ in enumerate(stg.freq[self.combobox_acoustic_data_choice.currentIndex()]):
for i in range(y_depth.shape[1]):
else:
stg.BS_stream_bed_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()][f, i, :] = (
convolve(stg.BS_stream_bed_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()][f, i, :],
kernel_avg))
if stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
elif stg.BS_cross_section_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
x_time = stg.time[self.combobox_acoustic_data_choice.currentIndex()]
y_depth = stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()]
stg.BS_cross_section_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = (deepcopy(
stg.BS_cross_section_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()]))
elif stg.depth[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
for f, _ in enumerate(stg.freq[self.combobox_acoustic_data_choice.currentIndex()]):
for i in range(y_depth.shape[1]):
x_time = stg.time[self.combobox_acoustic_data_choice.currentIndex()]
y_depth = stg.depth[self.combobox_acoustic_data_choice.currentIndex()]
stg.BS_cross_section_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()][f, i, :] = (
convolve(stg.BS_cross_section_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()][f, i, :],
kernel_avg))
if stg.BS_stream_bed_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
elif stg.BS_raw_data_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
stg.BS_stream_bed_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = (deepcopy(
stg.BS_stream_bed_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()]))
stg.BS_raw_data_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = (deepcopy(
stg.BS_raw_data_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()]))
for f, _ in enumerate(stg.freq[self.combobox_acoustic_data_choice.currentIndex()]):
for i in range(y_depth.shape[1]):
for f, _ in enumerate(stg.freq[self.combobox_acoustic_data_choice.currentIndex()]):
for i in range(y_depth.shape[1]):
stg.BS_stream_bed_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()][f, i, :] = (
convolve(stg.BS_stream_bed_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()][f, i, :],
kernel_avg))
stg.BS_raw_data_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()][f, i, :] = (
convolve(stg.BS_raw_data_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()][f, i, :],
kernel_avg))
elif stg.BS_cross_section_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
elif stg.BS_stream_bed[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
stg.BS_cross_section_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = (deepcopy(
stg.BS_cross_section_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()]))
stg.BS_stream_bed_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = (deepcopy(
stg.BS_stream_bed[self.combobox_acoustic_data_choice.currentIndex()]))
for f, _ in enumerate(stg.freq[self.combobox_acoustic_data_choice.currentIndex()]):
for i in range(y_depth.shape[1]):
for f, _ in enumerate(stg.freq[self.combobox_acoustic_data_choice.currentIndex()]):
for i in range(y_depth.shape[1]):
stg.BS_stream_bed_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()][f, i, :] = (
convolve(stg.BS_stream_bed[self.combobox_acoustic_data_choice.currentIndex()][f, i, :], kernel_avg))
stg.BS_cross_section_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()][f, i, :] = (
convolve(stg.BS_cross_section_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()][f, i, :],
kernel_avg))
elif stg.BS_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
elif stg.BS_raw_data_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
stg.BS_cross_section_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = (deepcopy(
stg.BS_cross_section[self.combobox_acoustic_data_choice.currentIndex()]))
stg.BS_raw_data_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = (deepcopy(
stg.BS_raw_data_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()]))
for f, _ in enumerate(stg.freq[self.combobox_acoustic_data_choice.currentIndex()]):
for i in range(y_depth.shape[1]):
stg.BS_cross_section_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()][f, i, :] = (
convolve(stg.BS_cross_section[self.combobox_acoustic_data_choice.currentIndex()][f, i, :],
kernel_avg))
for f, _ in enumerate(stg.freq[self.combobox_acoustic_data_choice.currentIndex()]):
for i in range(y_depth.shape[1]):
elif stg.BS_raw_data[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
stg.BS_raw_data_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()][f, i, :] = (
convolve(stg.BS_raw_data_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()][f, i, :],
kernel_avg))
stg.BS_raw_data_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = (deepcopy(
stg.BS_raw_data[self.combobox_acoustic_data_choice.currentIndex()]))
elif stg.BS_stream_bed[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
for f, _ in enumerate(stg.freq[self.combobox_acoustic_data_choice.currentIndex()]):
for i in range(y_depth.shape[1]):
stg.BS_raw_data_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()][f, i, :] = (
convolve(stg.BS_raw_data[self.combobox_acoustic_data_choice.currentIndex()][f, i, :], kernel_avg))
stg.BS_stream_bed_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = (deepcopy(
stg.BS_stream_bed[self.combobox_acoustic_data_choice.currentIndex()]))
for f, _ in enumerate(stg.freq[self.combobox_acoustic_data_choice.currentIndex()]):
for i in range(y_depth.shape[1]):
stg.BS_stream_bed_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()][f, i, :] = (
convolve(stg.BS_stream_bed[self.combobox_acoustic_data_choice.currentIndex()][f, i, :], kernel_avg))
elif stg.BS_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
stg.BS_cross_section_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = (deepcopy(
stg.BS_cross_section[self.combobox_acoustic_data_choice.currentIndex()]))
for f, _ in enumerate(stg.freq[self.combobox_acoustic_data_choice.currentIndex()]):
for i in range(y_depth.shape[1]):
stg.BS_cross_section_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()][f, i, :] = (
convolve(stg.BS_cross_section[self.combobox_acoustic_data_choice.currentIndex()][f, i, :],
kernel_avg))
elif stg.BS_raw_data[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
stg.BS_raw_data_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = (deepcopy(
stg.BS_raw_data[self.combobox_acoustic_data_choice.currentIndex()]))
for f, _ in enumerate(stg.freq[self.combobox_acoustic_data_choice.currentIndex()]):
for i in range(y_depth.shape[1]):
stg.BS_raw_data_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()][f, i, :] = (
convolve(stg.BS_raw_data[self.combobox_acoustic_data_choice.currentIndex()][f, i, :], kernel_avg))
self.plot_pre_processed_BS_signal()
self.update_plot_pre_processed_profile()
self.plot_pre_processed_BS_signal()
self.update_plot_pre_processed_profile()
def plot_pre_processed_profile(self):