Compare commits

..

5 Commits

6 changed files with 272 additions and 306 deletions

View File

@ -498,6 +498,7 @@ class ReadTableForOpen:
stg.SNR_filter_value.append(x[12]) stg.SNR_filter_value.append(x[12])
stg.Nb_cells_to_average_BS_signal.append(x[13]) stg.Nb_cells_to_average_BS_signal.append(x[13])
logger.debug(f"stg.temperature: {stg.temperature}")
logger.debug(f"stg.tmin: {stg.tmin}") logger.debug(f"stg.tmin: {stg.tmin}")
logger.debug(f"stg.tmin: {stg.tmax}") logger.debug(f"stg.tmin: {stg.tmax}")
logger.debug(f"stg.SNR_filter_value: {stg.SNR_filter_value}") logger.debug(f"stg.SNR_filter_value: {stg.SNR_filter_value}")

View File

@ -737,8 +737,11 @@ class AcousticDataTab(QWidget):
logger.debug(f"{__name__}: Update") logger.debug(f"{__name__}: Update")
self.blockSignals(True) self.blockSignals(True)
self.fileListWidget.blockSignals(True) self.fileListWidget.blockSignals(True)
self.combobox_ABS_system_choice.blockSignals(True)
self.combobox_ABS_system_choice.setCurrentText(stg.ABS_name[0]) self.combobox_ABS_system_choice.setCurrentText(stg.ABS_name[0])
self.ABS_system_choice()
self.fileListWidget.addFilenames(stg.filename_BS_raw_data) self.fileListWidget.addFilenames(stg.filename_BS_raw_data)
self.fill_measurements_information_groupbox() self.fill_measurements_information_groupbox()
@ -751,6 +754,7 @@ class AcousticDataTab(QWidget):
self.compute_rmin_rmax() self.compute_rmin_rmax()
self.set_range_for_spinboxes_bathymetry() self.set_range_for_spinboxes_bathymetry()
self.combobox_ABS_system_choice.blockSignals(False)
self.fileListWidget.blockSignals(False) self.fileListWidget.blockSignals(False)
self.blockSignals(False) self.blockSignals(False)
@ -974,7 +978,7 @@ class AcousticDataTab(QWidget):
self.gridLayout_groupbox_info.addWidget(self.lineEdit_temperature, 3, 1, 1, 1, Qt.AlignLeft) self.gridLayout_groupbox_info.addWidget(self.lineEdit_temperature, 3, 1, 1, 1, Qt.AlignLeft)
self.label_temperature_unit.show() self.label_temperature_unit.show()
self.gridLayout_groupbox_info.addWidget(self.label_temperature_unit, 3, 2, 1, 1, Qt.AlignLeft) self.gridLayout_groupbox_info.addWidget(self.label_temperature_unit, 3, 2, 1, 1, Qt.AlignLeft)
self.temperature_value() self.setup_temperature_value()
self.label_speed_of_sound.show() self.label_speed_of_sound.show()
self.gridLayout_groupbox_info.addWidget(self.label_speed_of_sound, 4, 0, 1, 1, Qt.AlignLeft) self.gridLayout_groupbox_info.addWidget(self.label_speed_of_sound, 4, 0, 1, 1, Qt.AlignLeft)
@ -1227,25 +1231,31 @@ class AcousticDataTab(QWidget):
self.update_plot_backscattered_acoustic_signal_recording() self.update_plot_backscattered_acoustic_signal_recording()
self.update_plot_profile() self.update_plot_profile()
def temperature_value(self): def setup_temperature_value(self):
self.water_velocity()
self.water_attenuation()
def temperature_value(self):
if findall(r",", self.lineEdit_temperature.text()): if findall(r",", self.lineEdit_temperature.text()):
stg.temperature = float(self.lineEdit_temperature.text().replace(',', '.')) stg.temperature = float(self.lineEdit_temperature.text().replace(',', '.'))
self.lineEdit_temperature.setText(self.lineEdit_temperature.text().replace(',', '.')) self.lineEdit_temperature.setText(self.lineEdit_temperature.text().replace(',', '.'))
else: else:
stg.temperature = float(self.lineEdit_temperature.text()) stg.temperature = float(self.lineEdit_temperature.text())
self.lineEdit_temperature.setText(self.lineEdit_temperature.text()) self.lineEdit_temperature.setText(self.lineEdit_temperature.text())
self.water_velocity() self.water_velocity()
self.water_attenuation() self.water_attenuation()
def water_velocity(self): def water_velocity(self):
"""Computing sond speed from Bilaniuk and Wong 1993""" """Computing sond speed from Bilaniuk and Wong 1993"""
temp = float(self.lineEdit_temperature.text())
C = (1.40238744 * 1e3 + C = (1.40238744 * 1e3 +
5.03836171 * float(self.lineEdit_temperature.text()) - 5.03836171 * temp -
5.81172916 * 1e-2 * float(self.lineEdit_temperature.text()) ** 2 + 5.81172916 * 1e-2 * temp ** 2 +
3.34638117 * 1e-4 * float(self.lineEdit_temperature.text()) ** 3 - 3.34638117 * 1e-4 * temp ** 3 -
1.48259672 * 1e-6 * float(self.lineEdit_temperature.text()) ** 4 + 1.48259672 * 1e-6 * temp ** 4 +
3.16585020 * 1e-9 * float(self.lineEdit_temperature.text()) ** 5) 3.16585020 * 1e-9 * temp ** 5)
stg.water_velocity = C stg.water_velocity = C
self.lineEdit_speed_of_sound.setText(str(round(stg.water_velocity, 2))) self.lineEdit_speed_of_sound.setText(str(round(stg.water_velocity, 2)))
@ -1297,26 +1307,29 @@ class AcousticDataTab(QWidget):
# -------- Computing water attenuation coefficient ----------- # # -------- Computing water attenuation coefficient ----------- #
def water_attenuation(self): def water_attenuation(self):
"""Computing attenuation from François and Garrison 1982""" """Computing attenuation from François and Garrison 1982"""
temp = float(self.lineEdit_temperature.text())
file_id = self.fileListWidget.currentRow()
if self.fileListWidget.count() > 0: if self.fileListWidget.count() > 0:
stg.water_attenuation[self.fileListWidget.currentRow()].clear() stg.water_attenuation[file_id].clear()
for f in stg.freq[self.fileListWidget.currentRow()]: for f in stg.freq[file_id]:
if float(self.lineEdit_temperature.text()) > 20: if temp > 20:
alpha = ((3.964 * 1e-4 - alpha = ((3.964 * 1e-4 -
1.146 * 1e-5 * float(self.lineEdit_temperature.text()) + 1.146 * 1e-5 * temp +
1.45 * 1e-7 * float(self.lineEdit_temperature.text()) ** 2 - 1.45 * 1e-7 * temp ** 2 -
6.5 * 1e-10 * float(self.lineEdit_temperature.text()) ** 3) * 6.5 * 1e-10 * temp ** 3) *
1e-3 * (np.log(10) / 20) * (f * 1e-3) ** 2) 1e-3 * (np.log(10) / 20) * (f * 1e-3) ** 2)
else: else:
alpha = ((4.937 * 1e-4 - alpha = ((4.937 * 1e-4 -
2.59 * 1e-5 * float(self.lineEdit_temperature.text()) + 2.59 * 1e-5 * temp +
9.11 * 1e-7 * float(self.lineEdit_temperature.text()) ** 2 - 9.11 * 1e-7 * temp ** 2 -
1.5 * 1e-8 * float(self.lineEdit_temperature.text()) ** 3) * 1.5 * 1e-8 * temp ** 3) *
1e-3 * (np.log(10) / 20) * (f * 1e-3) ** 2) 1e-3 * (np.log(10) / 20) * (f * 1e-3) ** 2)
stg.water_attenuation[self.fileListWidget.currentRow()].append(alpha) stg.water_attenuation[file_id].append(alpha)
self.lineEdit_sound_attenuation.setText( self.lineEdit_sound_attenuation.setText(
str("%.6f" % stg.water_attenuation[self.fileListWidget.currentRow()][ str("%.6f" % stg.water_attenuation[file_id][
self.combobox_frequency_information.currentIndex()])) self.combobox_frequency_information.currentIndex()]))
def open_dialog_box(self): def open_dialog_box(self):
@ -1752,6 +1765,7 @@ class AcousticDataTab(QWidget):
.currentIndexChanged\ .currentIndexChanged\
.connect(self.combobox_frequency_information_update) .connect(self.combobox_frequency_information_update)
logger.debug(f"Set temperature = {stg.temperature}")
self.lineEdit_temperature.setText(str(stg.temperature)) self.lineEdit_temperature.setText(str(stg.temperature))
self.label_profiles_value.setText( self.label_profiles_value.setText(

View File

@ -21,6 +21,13 @@
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import os import os
import time
import pickle
import logging
import numpy as np
import pandas as pd
from subprocess import Popen
# Form implementation generated from reading ui file 'mainwindow.ui' # Form implementation generated from reading ui file 'mainwindow.ui'
# #
@ -38,12 +45,7 @@ from Model.calibration_constant_kt import CalibrationConstantKt
from View.about_window import AboutWindow from View.about_window import AboutWindow
import settings as stg import settings as stg
import numpy as np logger = logging.getLogger("acoused")
import pandas as pd
from subprocess import Popen
import time
class Ui_MainWindow(object): class Ui_MainWindow(object):
def setupUi(self, MainWindow): def setupUi(self, MainWindow):

View File

@ -21,6 +21,9 @@ class NoteTab(QWidget):
path_icon = "./icons/" path_icon = "./icons/"
# FIXME: The note are disabled because there are never saved
widget_tab.setEnabled(False)
self.verticalLayout_main_note_tab = QVBoxLayout(widget_tab) self.verticalLayout_main_note_tab = QVBoxLayout(widget_tab)
self.horizontalLayout_toolbar = QHBoxLayout() self.horizontalLayout_toolbar = QHBoxLayout()

View File

@ -284,6 +284,10 @@ class SampleDataTab(QWidget):
self.lineEdit_sand_sediment.setToolTip(stg.path_sand) self.lineEdit_sand_sediment.setToolTip(stg.path_sand)
self.fill_table_sand() self.fill_table_sand()
#self.plot_sample_position_on_transect()
self.plot_total_concentration()
self.plot_PSD_fine_and_sand_sediments()
self.blockSignals(False) self.blockSignals(False)
def last_opened_file_path(self, priority="sand"): def last_opened_file_path(self, priority="sand"):
@ -331,6 +335,10 @@ class SampleDataTab(QWidget):
self.lineEdit_fine_sediment.setToolTip(stg.path_fine) self.lineEdit_fine_sediment.setToolTip(stg.path_fine)
self.fill_table_fine() self.fill_table_fine()
self.plot_sample_position_on_transect()
self.plot_total_concentration()
self.plot_PSD_fine_and_sand_sediments()
def open_dialog_box_sand_sediment(self): def open_dialog_box_sand_sediment(self):
filename_sand_sediment = QFileDialog.getOpenFileName( filename_sand_sediment = QFileDialog.getOpenFileName(
self, "Sand sediment file", self, "Sand sediment file",
@ -356,6 +364,10 @@ class SampleDataTab(QWidget):
self.lineEdit_sand_sediment.setToolTip(stg.path_sand) self.lineEdit_sand_sediment.setToolTip(stg.path_sand)
self.fill_table_sand() self.fill_table_sand()
self.plot_sample_position_on_transect()
self.plot_total_concentration()
self.plot_PSD_fine_and_sand_sediments()
def load_fine_sediment_data(self): def load_fine_sediment_data(self):
fine_granulo_data = GranuloLoader( fine_granulo_data = GranuloLoader(
os.path.join(stg.path_fine, stg.filename_fine) os.path.join(stg.path_fine, stg.filename_fine)
@ -486,10 +498,6 @@ class SampleDataTab(QWidget):
self.combobox_x_axis.currentIndexChanged.connect(self.plot_total_concentration) self.combobox_x_axis.currentIndexChanged.connect(self.plot_total_concentration)
self.combobox_y_axis.currentIndexChanged.connect(self.plot_total_concentration) self.combobox_y_axis.currentIndexChanged.connect(self.plot_total_concentration)
self.plot_sample_position_on_transect()
self.plot_total_concentration()
self.plot_PSD_fine_and_sand_sediments()
self.tableWidget_fine.blockSignals(False) self.tableWidget_fine.blockSignals(False)
else: else:
msgBox = QMessageBox() msgBox = QMessageBox()
@ -588,10 +596,6 @@ class SampleDataTab(QWidget):
self.combobox_y_axis.currentIndexChanged\ self.combobox_y_axis.currentIndexChanged\
.connect(self.plot_total_concentration) .connect(self.plot_total_concentration)
self.plot_sample_position_on_transect()
self.plot_total_concentration()
self.plot_PSD_fine_and_sand_sediments()
self.tableWidget_sand.blockSignals(False) self.tableWidget_sand.blockSignals(False)
# --- Function to extract position of sample from table checkboxes to update plots --- # --- Function to extract position of sample from table checkboxes to update plots ---
@ -752,13 +756,19 @@ class SampleDataTab(QWidget):
self.combobox_acoustic_data.clear() self.combobox_acoustic_data.clear()
for n, m in enumerate(stg.noise_method): for n, m in enumerate(stg.noise_method):
if stg.noise_method[n] == 0: if stg.noise_method[n] == 0:
self.combobox_acoustic_data.addItem(stg.filename_BS_raw_data[n]) self.combobox_acoustic_data\
.addItem(stg.filename_BS_raw_data[n])
elif stg.noise_method[n] != 0: elif stg.noise_method[n] != 0:
self.combobox_acoustic_data.addItem(stg.data_preprocessed[n]) self.combobox_acoustic_data\
.addItem(stg.data_preprocessed[n])
self.plot_sample_position_on_transect() self.plot_sample_position_on_transect()
self.combobox_acoustic_data.currentIndexChanged.connect(self.update_plot_sample_position_on_transect) self.combobox_acoustic_data\
self.combobox_frequencies.currentIndexChanged.connect(self.update_plot_sample_position_on_transect) .currentIndexChanged\
.connect(self.update_plot_sample_position_on_transect)
self.combobox_frequencies\
.currentIndexChanged\
.connect(self.update_plot_sample_position_on_transect)
def plot_sample_position_on_transect(self): def plot_sample_position_on_transect(self):
self.verticalLayout_groupbox_plot_transect\ self.verticalLayout_groupbox_plot_transect\

View File

@ -515,7 +515,7 @@ class SignalProcessingTab(QWidget):
self.combobox_acoustic_data_choice.blockSignals(True) self.combobox_acoustic_data_choice.blockSignals(True)
self.full_update_fill_text() self.full_update_fill_text()
self.update_SignalPreprocessingTab(recompute=True) self.update_SignalPreprocessingTab()
self.combobox_acoustic_data_choice.blockSignals(False) self.combobox_acoustic_data_choice.blockSignals(False)
self.blockSignals(False) self.blockSignals(False)
@ -535,7 +535,7 @@ class SignalProcessingTab(QWidget):
str(stg.Nb_cells_to_average_BS_signal[data_id]) str(stg.Nb_cells_to_average_BS_signal[data_id])
) )
def update_SignalPreprocessingTab(self, recompute=True): def update_SignalPreprocessingTab(self):
""" The tab is updated in two cases : """ The tab is updated in two cases :
- the user remove a file (in the list widget) in the first tab (Acoustic data), so that the combobox - the user remove a file (in the list widget) in the first tab (Acoustic data), so that the combobox
@ -573,9 +573,7 @@ class SignalProcessingTab(QWidget):
stg.freq_text[data_id] stg.freq_text[data_id]
) )
if recompute:
self.recompute() self.recompute()
self.replot() self.replot()
logger.debug("Update the Signal preprocessing tab... Done") logger.debug("Update the Signal preprocessing tab... Done")
@ -583,6 +581,33 @@ class SignalProcessingTab(QWidget):
self.combobox_freq_noise_from_profile_tail.blockSignals(False) self.combobox_freq_noise_from_profile_tail.blockSignals(False)
self.combobox_acoustic_data_choice.blockSignals(False) self.combobox_acoustic_data_choice.blockSignals(False)
def _is_correct_shape(self, data):
data_id = self.combobox_acoustic_data_choice.currentIndex()
if stg.time_cross_section[data_id].shape != (0,):
x_time = stg.time_cross_section[data_id]
else:
x_time = stg.time[data_id]
if stg.depth_cross_section[data_id].shape != (0,):
y_depth = stg.depth_cross_section[data_id]
else:
y_depth = stg.depth[data_id]
time_shape, = x_time[data_id].shape
depth_shape, = y_depth[data_id].shape
logger.debug(f"_is_correct_shape: time shape: {time_shape}")
logger.debug(f"_is_correct_shape: depth shape: {depth_shape}")
logger.debug(f"_is_correct_shape: data shape: {data[data_id].shape}")
if data[data_id].shape == (0,):
return False
_, y, z = data[data_id].shape
return (y == depth_shape and z == time_shape)
def recompute(self): def recompute(self):
data_id = self.combobox_acoustic_data_choice.currentIndex() data_id = self.combobox_acoustic_data_choice.currentIndex()
@ -835,28 +860,29 @@ class SignalProcessingTab(QWidget):
if len(stg.filename_BS_raw_data) == 0: if len(stg.filename_BS_raw_data) == 0:
pass pass
else: else:
data_id = self.combobox_acoustic_data_choice.currentIndex()
stg.BS_noise_raw_data[self.combobox_acoustic_data_choice.currentIndex()] = np.array([]) stg.BS_noise_raw_data[data_id] = np.array([])
stg.BS_noise_averaged_data[self.combobox_acoustic_data_choice.currentIndex()] = np.array([]) stg.BS_noise_averaged_data[data_id] = np.array([])
stg.SNR_raw_data[self.combobox_acoustic_data_choice.currentIndex()] = np.array([]) stg.SNR_raw_data[data_id] = np.array([])
stg.SNR_cross_section[self.combobox_acoustic_data_choice.currentIndex()] = np.array([]) stg.SNR_cross_section[data_id] = np.array([])
stg.SNR_stream_bed[self.combobox_acoustic_data_choice.currentIndex()] = np.array([]) stg.SNR_stream_bed[data_id] = np.array([])
stg.time_noise[self.combobox_acoustic_data_choice.currentIndex()] = np.array([]) stg.time_noise[data_id] = np.array([])
stg.SNR_filter_value[self.combobox_acoustic_data_choice.currentIndex()] = 0 stg.SNR_filter_value[data_id] = 0
stg.BS_raw_data_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()] = np.array([]) stg.BS_raw_data_pre_process_SNR[data_id] = np.array([])
stg.BS_raw_data_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = np.array([]) stg.BS_raw_data_pre_process_average[data_id] = np.array([])
stg.BS_cross_section_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()] = np.array([]) stg.BS_cross_section_pre_process_SNR[data_id] = np.array([])
stg.BS_cross_section_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = np.array([]) stg.BS_cross_section_pre_process_average[data_id] = np.array([])
stg.BS_stream_bed_pre_process_SNR[self.combobox_acoustic_data_choice.currentIndex()] = np.array([]) stg.BS_stream_bed_pre_process_SNR[data_id] = np.array([])
stg.BS_stream_bed_pre_process_average[self.combobox_acoustic_data_choice.currentIndex()] = np.array([]) stg.BS_stream_bed_pre_process_average[data_id] = np.array([])
print("stg.noise_method[self.combobox_acoustic_data_choice.currentIndex()]", stg.noise_method[self.combobox_acoustic_data_choice.currentIndex()]) print("stg.noise_method[data_id]", stg.noise_method[data_id])
if stg.noise_method[self.combobox_acoustic_data_choice.currentIndex()] == 0: if stg.noise_method[data_id] == 0:
self.lineEdit_noise_file.clear() self.lineEdit_noise_file.clear()
elif stg.noise_method[self.combobox_acoustic_data_choice.currentIndex()] == 1: elif stg.noise_method[data_id] == 1:
self.lineEdit_val1.clear() self.lineEdit_val1.clear()
self.lineEdit_val1.setText("0.00") self.lineEdit_val1.setText("0.00")
@ -973,136 +999,140 @@ class SignalProcessingTab(QWidget):
def load_noise_data_and_compute_SNR(self): def load_noise_data_and_compute_SNR(self):
data_id = self.combobox_acoustic_data_choice.currentIndex()
stg.noise_method[self.combobox_acoustic_data_choice.currentIndex()] = 0 stg.noise_method[data_id] = 0
noise_data = AcousticDataLoader(stg.path_BS_noise_data[self.combobox_acoustic_data_choice.currentIndex()] + noise_data = AcousticDataLoader(stg.path_BS_noise_data[data_id] +
"/" + "/" +
stg.filename_BS_noise_data[self.combobox_acoustic_data_choice.currentIndex()]) stg.filename_BS_noise_data[data_id])
stg.BS_noise_raw_data[self.combobox_acoustic_data_choice.currentIndex()] = noise_data._BS_raw_data stg.BS_noise_raw_data[data_id] = noise_data._BS_raw_data
stg.time_noise[self.combobox_acoustic_data_choice.currentIndex()] = noise_data._time stg.time_noise[data_id] = noise_data._time
stg.depth_noise[self.combobox_acoustic_data_choice.currentIndex()] = noise_data._r stg.depth_noise[data_id] = noise_data._r
if stg.BS_stream_bed[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,): if stg.BS_stream_bed[data_id].shape != (0,):
noise = np.zeros(stg.BS_stream_bed[self.combobox_acoustic_data_choice.currentIndex()].shape) noise = np.zeros(stg.BS_stream_bed[data_id].shape)
for f, _ in enumerate(noise_data._freq): for f, _ in enumerate(noise_data._freq):
noise[f, :, :] = np.mean( noise[f, :, :] = np.mean(
stg.BS_noise_raw_data[self.combobox_acoustic_data_choice.currentIndex()][f, :, :], axis=(0, 1)) stg.BS_noise_raw_data[data_id][f, :, :], axis=(0, 1))
stg.BS_noise_averaged_data[self.combobox_acoustic_data_choice.currentIndex()] = noise stg.BS_noise_averaged_data[data_id] = noise
stg.SNR_stream_bed[self.combobox_acoustic_data_choice.currentIndex()] = ( stg.SNR_stream_bed[data_id] = (
np.divide((stg.BS_stream_bed[self.combobox_acoustic_data_choice.currentIndex()] - np.divide((stg.BS_stream_bed[data_id] -
stg.BS_noise_averaged_data[self.combobox_acoustic_data_choice.currentIndex()]) ** 2, stg.BS_noise_averaged_data[data_id]) ** 2,
stg.BS_noise_averaged_data[self.combobox_acoustic_data_choice.currentIndex()] ** 2)) stg.BS_noise_averaged_data[data_id] ** 2))
elif stg.BS_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,): elif stg.BS_cross_section[data_id].shape != (0,):
noise = np.zeros(stg.BS_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape) noise = np.zeros(stg.BS_cross_section[data_id].shape)
for f, _ in enumerate(noise_data._freq): for f, _ in enumerate(noise_data._freq):
noise[f, :, :] = np.mean( noise[f, :, :] = np.mean(
stg.BS_noise_raw_data[self.combobox_acoustic_data_choice.currentIndex()][f, :, :], axis=(0, 1)) stg.BS_noise_raw_data[data_id][f, :, :], axis=(0, 1))
stg.BS_noise_averaged_data[self.combobox_acoustic_data_choice.currentIndex()] = noise stg.BS_noise_averaged_data[data_id] = noise
stg.SNR_cross_section[self.combobox_acoustic_data_choice.currentIndex()] = ( stg.SNR_cross_section[data_id] = (
np.divide((stg.BS_cross_section[self.combobox_acoustic_data_choice.currentIndex()] - np.divide((stg.BS_cross_section[data_id] -
stg.BS_noise_averaged_data[self.combobox_acoustic_data_choice.currentIndex()]) ** 2, stg.BS_noise_averaged_data[data_id]) ** 2,
stg.BS_noise_averaged_data[self.combobox_acoustic_data_choice.currentIndex()] ** 2)) stg.BS_noise_averaged_data[data_id] ** 2))
# stg.SNR_reshape = np.reshape(stg.SNR_cross_section, (stg.r.shape[1] * stg.t.shape[1], stg.freq.shape[0]), order="F") # stg.SNR_reshape = np.reshape(stg.SNR_cross_section, (stg.r.shape[1] * stg.t.shape[1], stg.freq.shape[0]), order="F")
else: else:
noise = np.zeros(stg.BS_raw_data[self.combobox_acoustic_data_choice.currentIndex()].shape) noise = np.zeros(stg.BS_raw_data[data_id].shape)
for f, _ in enumerate(noise_data._freq): for f, _ in enumerate(noise_data._freq):
noise[f, :, :] = np.mean( noise[f, :, :] = np.mean(
stg.BS_noise_raw_data[self.combobox_acoustic_data_choice.currentIndex()][f, :, :], axis=(0, 1)) stg.BS_noise_raw_data[data_id][f, :, :], axis=(0, 1))
stg.BS_noise_averaged_data[self.combobox_acoustic_data_choice.currentIndex()] = noise stg.BS_noise_averaged_data[data_id] = noise
stg.SNR_raw_data[self.combobox_acoustic_data_choice.currentIndex()] = ( stg.SNR_raw_data[data_id] = (
np.divide((stg.BS_raw_data[self.combobox_acoustic_data_choice.currentIndex()] - np.divide((stg.BS_raw_data[data_id] -
stg.BS_noise_averaged_data[self.combobox_acoustic_data_choice.currentIndex()]) ** 2, stg.BS_noise_averaged_data[data_id]) ** 2,
stg.BS_noise_averaged_data[self.combobox_acoustic_data_choice.currentIndex()] ** 2)) stg.BS_noise_averaged_data[data_id] ** 2))
def open_plot_noise_window(self): def open_plot_noise_window(self):
pnw = PlotNoiseWindow() pnw = PlotNoiseWindow()
pnw.exec() pnw.exec()
def compute_noise_from_profile_tail_value(self): def compute_noise_from_profile_tail_value(self):
data_id = self.combobox_acoustic_data_choice.currentIndex()
stg.noise_method[self.combobox_acoustic_data_choice.currentIndex()] = 1 stg.noise_method[data_id] = 1
stg.noise_value[data_id] = (
float(self.lineEdit_profile_tail_value.text().replace(",", "."))
)
stg.noise_value[self.combobox_acoustic_data_choice.currentIndex()] = ( if stg.time_cross_section[data_id].shape != (0,):
float(self.lineEdit_profile_tail_value.text().replace(",", "."))) stg.time_noise[data_id] = (
stg.time_cross_section[data_id]
if stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,): )
stg.time_noise[self.combobox_acoustic_data_choice.currentIndex()] = (
stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()])
else: else:
stg.time_noise[self.combobox_acoustic_data_choice.currentIndex()] = ( stg.time_noise[data_id] = (
stg.time[self.combobox_acoustic_data_choice.currentIndex()]) stg.time[data_id]
if stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,): )
stg.depth_noise[self.combobox_acoustic_data_choice.currentIndex()] = ( if stg.depth_cross_section[data_id].shape != (0,):
stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()]) stg.depth_noise[data_id] = (
stg.depth_cross_section[data_id]
)
else: else:
stg.depth_noise[self.combobox_acoustic_data_choice.currentIndex()] = ( stg.depth_noise[data_id] = (
stg.depth[self.combobox_acoustic_data_choice.currentIndex()]) stg.depth[data_id]
)
# --- Compute noise from value and compute SNR --- # --- Compute noise from value and compute SNR ---
if self._is_correct_shape(stg.BS_stream_bed):
if stg.BS_stream_bed[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,): stg.BS_noise_raw_data[data_id] = np.array([])
stg.BS_noise_raw_data[self.combobox_acoustic_data_choice.currentIndex()] = np.array([]) stg.BS_noise_raw_data[data_id] = (
stg.BS_noise_raw_data[self.combobox_acoustic_data_choice.currentIndex()] = ( np.full(stg.BS_stream_bed[data_id].shape,
np.full(stg.BS_stream_bed[self.combobox_acoustic_data_choice.currentIndex()].shape,
float(self.lineEdit_profile_tail_value.text().replace(",", ".")))) float(self.lineEdit_profile_tail_value.text().replace(",", "."))))
stg.BS_noise_averaged_data[self.combobox_acoustic_data_choice.currentIndex()] = ( stg.BS_noise_averaged_data[data_id] = (
stg.BS_noise_raw_data[self.combobox_acoustic_data_choice.currentIndex()][:, :, stg.BS_noise_raw_data[data_id][:, :,
:stg.BS_stream_bed[self.combobox_acoustic_data_choice.currentIndex()].shape[2]]) :stg.BS_stream_bed[data_id].shape[2]])
stg.SNR_stream_bed[self.combobox_acoustic_data_choice.currentIndex()] = ( stg.SNR_stream_bed[data_id] = (
np.divide((stg.BS_stream_bed[self.combobox_acoustic_data_choice.currentIndex()] np.divide((stg.BS_stream_bed[data_id]
- stg.BS_noise_raw_data[self.combobox_acoustic_data_choice.currentIndex()]) ** 2, - stg.BS_noise_raw_data[data_id]) ** 2,
stg.BS_noise_raw_data[self.combobox_acoustic_data_choice.currentIndex()] ** 2)) stg.BS_noise_raw_data[data_id] ** 2))
elif stg.BS_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,): elif self._is_correct_shape(stg.BS_cross_section):
stg.BS_noise_raw_data[data_id] = (
stg.BS_noise_raw_data[self.combobox_acoustic_data_choice.currentIndex()] = ( np.full(stg.BS_cross_section[data_id].shape,
np.full(stg.BS_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape,
float(self.lineEdit_profile_tail_value.text().replace(",", ".")))) float(self.lineEdit_profile_tail_value.text().replace(",", "."))))
stg.BS_noise_averaged_data[self.combobox_acoustic_data_choice.currentIndex()] = ( stg.BS_noise_averaged_data[data_id] = (
stg.BS_noise_raw_data[self.combobox_acoustic_data_choice.currentIndex()][:, :, stg.BS_noise_raw_data[data_id][:, :,
:stg.BS_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape[2]]) :stg.BS_cross_section[data_id].shape[2]])
stg.SNR_cross_section[self.combobox_acoustic_data_choice.currentIndex()] = ( stg.SNR_cross_section[data_id] = (
np.divide((stg.BS_cross_section[self.combobox_acoustic_data_choice.currentIndex()] np.divide((stg.BS_cross_section[data_id]
- stg.BS_noise_raw_data[self.combobox_acoustic_data_choice.currentIndex()]) ** 2, - stg.BS_noise_raw_data[data_id]) ** 2,
stg.BS_noise_raw_data[self.combobox_acoustic_data_choice.currentIndex()] ** 2)) # stg.BS_noise_raw_data[data_id] ** 2)) #
else: else:
stg.BS_noise_raw_data[self.combobox_acoustic_data_choice.currentIndex()] = ( stg.BS_noise_raw_data[data_id] = (
np.full(stg.BS_raw_data[self.combobox_acoustic_data_choice.currentIndex()].shape, np.full(stg.BS_raw_data[data_id].shape,
float(self.lineEdit_profile_tail_value.text().replace(",", ".")))) float(self.lineEdit_profile_tail_value.text().replace(",", "."))))
stg.BS_noise_averaged_data[self.combobox_acoustic_data_choice.currentIndex()] = ( stg.BS_noise_averaged_data[data_id] = (
stg.BS_noise_raw_data[self.combobox_acoustic_data_choice.currentIndex()]) stg.BS_noise_raw_data[data_id])
stg.SNR_raw_data[self.combobox_acoustic_data_choice.currentIndex()] = ( stg.SNR_raw_data[data_id] = (
np.divide((stg.BS_raw_data[self.combobox_acoustic_data_choice.currentIndex()] np.divide((stg.BS_raw_data[data_id]
- stg.BS_noise_raw_data[self.combobox_acoustic_data_choice.currentIndex()]) ** 2, - stg.BS_noise_raw_data[data_id]) ** 2,
stg.BS_noise_raw_data[self.combobox_acoustic_data_choice.currentIndex()] ** 2)) stg.BS_noise_raw_data[data_id] ** 2))
self.combobox_frequency_profile.clear() self.combobox_frequency_profile.clear()
self.combobox_frequency_profile.addItems( self.combobox_frequency_profile.addItems(
[f for f in stg.freq_text[self.combobox_acoustic_data_choice.currentIndex()]]) [f for f in stg.freq_text[data_id]])
# --- Trigger graphic widgets --- # --- Trigger graphic widgets ---
if stg.SNR_filter_value[self.combobox_acoustic_data_choice.currentIndex()] == 0: if stg.SNR_filter_value[data_id] == 0:
self.lineEdit_SNR_criterion.setText("0.00") self.lineEdit_SNR_criterion.setText("0.00")
else: else:
self.lineEdit_SNR_criterion.setText(str(stg.SNR_filter_value[self.combobox_acoustic_data_choice.currentIndex()])) self.lineEdit_SNR_criterion.setText(str(stg.SNR_filter_value[data_id]))
if stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,): if stg.time_cross_section[data_id].shape != (0,):
self.slider.setMaximum(stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape[1]) self.slider.setMaximum(stg.time_cross_section[data_id].shape[1])
else: else:
self.slider.setMaximum(stg.time[self.combobox_acoustic_data_choice.currentIndex()].shape[1]) self.slider.setMaximum(stg.time[data_id].shape[1])
# self.activate_list_of_pre_processed_data() # self.activate_list_of_pre_processed_data()
@ -1150,14 +1180,17 @@ class SignalProcessingTab(QWidget):
# elif self.canvas_SNR == None: # elif self.canvas_SNR == None:
else: else:
data_id = self.combobox_acoustic_data_choice.currentIndex()
if ((self.combobox_acoustic_data_choice.currentIndex() != -1) if ((data_id != -1)
and (stg.BS_noise_raw_data[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,))): and (stg.BS_noise_raw_data[data_id].shape != (0,))):
self.verticalLayout_groupbox_plot_SNR.removeWidget(self.toolbar_SNR) self.verticalLayout_groupbox_plot_SNR.removeWidget(self.toolbar_SNR)
self.verticalLayout_groupbox_plot_SNR.removeWidget(self.scroll_SNR) self.verticalLayout_groupbox_plot_SNR.removeWidget(self.scroll_SNR)
self.fig_SNR, self.axis_SNR = plt.subplots(nrows=stg.freq[self.combobox_acoustic_data_choice.currentIndex()].shape[0], ncols=1, sharex=True, sharey=False, layout='constrained') self.fig_SNR, self.axis_SNR = plt.subplots(
nrows=stg.freq[data_id].shape[0], ncols=1,
sharex=True, sharey=False, layout='constrained'
)
self.canvas_SNR = FigureCanvas(self.fig_SNR) self.canvas_SNR = FigureCanvas(self.fig_SNR)
self.toolbar_SNR = NavigationToolBar(self.canvas_SNR, self) self.toolbar_SNR = NavigationToolBar(self.canvas_SNR, self)
@ -1166,158 +1199,82 @@ class SignalProcessingTab(QWidget):
self.verticalLayout_groupbox_plot_SNR.addWidget(self.toolbar_SNR) self.verticalLayout_groupbox_plot_SNR.addWidget(self.toolbar_SNR)
self.verticalLayout_groupbox_plot_SNR.addWidget(self.scroll_SNR) self.verticalLayout_groupbox_plot_SNR.addWidget(self.scroll_SNR)
for f, _ in enumerate(stg.freq[self.combobox_acoustic_data_choice.currentIndex()]): for f, _ in enumerate(stg.freq[data_id]):
if stg.SNR_stream_bed[data_id].shape != (0,):
if stg.SNR_stream_bed[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,): SNR_data = stg.SNR_stream_bed
elif stg.SNR_cross_section[data_id].shape != (0,):
if stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,): SNR_data = stg.SNR_cross_section
if stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
x, y = np.meshgrid(
stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()][f, :],
stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][f, :])
elif stg.depth[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
x, y = np.meshgrid(
stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()][f, :],
stg.depth[self.combobox_acoustic_data_choice.currentIndex()][f, :])
if stg.time_cross_section[data_id].shape != (0,):
time_data = stg.time_cross_section
else: else:
time_data = stg.time
if stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,): if stg.depth_cross_section[data_id].shape != (0,):
depth_data = stg.depth_cross_section
elif stg.depth[data_id].shape != (0,):
depth_data = stg.depth
x, y = np.meshgrid( x, y = np.meshgrid(
stg.time[self.combobox_acoustic_data_choice.currentIndex()][f, :], time_data[data_id][f, :],
stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][f, :]) depth_data[data_id][f, :]
)
elif stg.depth[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,): val_min = np.nanmin(SNR_data[data_id][f, :, :])
val_max = np.nanmax(SNR_data[data_id][f, :, :])
x, y = np.meshgrid(
stg.time[self.combobox_acoustic_data_choice.currentIndex()][f, :],
stg.depth[self.combobox_acoustic_data_choice.currentIndex()][f, :])
val_min = np.nanmin(stg.SNR_stream_bed[self.combobox_acoustic_data_choice.currentIndex()][f, :, :])
val_max = np.nanmax(stg.SNR_stream_bed[self.combobox_acoustic_data_choice.currentIndex()][f, :, :])
if val_min == val_max:
levels = np.array([00.1, 1, 2, 10, 100, 1000, 1e6]) levels = np.array([00.1, 1, 2, 10, 100, 1000, 1e6])
bounds = [00.1, 1, 2, 10, 100, 1000, val_max * 1.2] bounds = [00.1, 1, 2, 10, 100, 1000, val_max * 1.2]
norm = BoundaryNorm(boundaries=bounds, ncolors=300)
else: if val_min != val_max:
if val_min == 0: if val_min == 0:
val_min = 1e-5 val_min = 1e-5
if val_max > 1000:
levels = np.array([00.1, 1, 2, 10, 100, 1000, 1e6])
bounds = [00.1, 1, 2, 10, 100, 1000, val_max * 1.2]
norm = BoundaryNorm(boundaries=bounds, ncolors=300)
else: else:
levels = np.array([00.1, 1, 2, 10, 100, 1000, val_max * 1000 + 1]) levels = np.array(
bounds = [00.1, 1, 2, 10, 100, 1000, val_max * 1000 + 1] [00.1, 1, 2, 10, 100, 1000, val_max * 1000 + 1]
)
bounds = [
00.1, 1, 2, 10, 100, 1000,
val_max * 1000 + 1
]
norm = BoundaryNorm(boundaries=bounds, ncolors=300) norm = BoundaryNorm(boundaries=bounds, ncolors=300)
cf = (self.axis_SNR[f].contourf(x, -y, cf = self.axis_SNR[f].contourf(
stg.SNR_stream_bed[self.combobox_acoustic_data_choice.currentIndex()][f, :, :], x, -y,
SNR_data[data_id][f, :, :],
levels, cmap='gist_rainbow', levels, cmap='gist_rainbow',
norm=norm)) norm=norm
)
elif stg.SNR_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,): self.axis_SNR[f].text(
1, .70, stg.freq_text[data_id][f],
if stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,): fontsize=14, fontweight='bold', fontname="DejaVu Sans",
c="black", alpha=0.5,
if stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,): horizontalalignment='right',
verticalalignment='bottom',
x, y = np.meshgrid( transform=self.axis_SNR[f].transAxes
stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()][f, :], )
stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][f, :])
elif stg.depth[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
x, y = np.meshgrid(
stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()][f, :],
stg.depth[self.combobox_acoustic_data_choice.currentIndex()][f, :])
else:
if stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
x, y = np.meshgrid(
stg.time[self.combobox_acoustic_data_choice.currentIndex()][f, :],
stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][f, :])
elif stg.depth[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,):
x, y = np.meshgrid(
stg.time[self.combobox_acoustic_data_choice.currentIndex()][f, :],
stg.depth[self.combobox_acoustic_data_choice.currentIndex()][f, :])
val_min = np.nanmin(stg.SNR_cross_section[self.combobox_acoustic_data_choice.currentIndex()][f, :, :])
val_max = np.nanmax(stg.SNR_cross_section[self.combobox_acoustic_data_choice.currentIndex()][f, :, :])
if val_min == val_max:
levels = np.array([00.1, 1, 2, 10, 100, 1000, 1e6])
bounds = [00.1, 1, 2, 10, 100, 1000, val_max * 1.2]
norm = BoundaryNorm(boundaries=bounds, ncolors=300)
else:
if val_min == 0:
val_min = 1e-5
if val_max > 1000:
levels = np.array([00.1, 1, 2, 10, 100, 1000, 1e6])
bounds = [00.1, 1, 2, 10, 100, 1000, val_max * 1.2]
norm = BoundaryNorm(boundaries=bounds, ncolors=300)
else:
levels = np.array([00.1, 1, 2, 10, 100, 1000, val_max * 1000 + 1])
bounds = [00.1, 1, 2, 10, 100, 1000, val_max * 1000 + 1]
norm = BoundaryNorm(boundaries=bounds, ncolors=300)
cf = (self.axis_SNR[f].contourf(x, -y,
stg.SNR_cross_section[
self.combobox_acoustic_data_choice.currentIndex()][f, :, :],
levels, cmap='gist_rainbow', norm=norm))
else:
x, y = np.meshgrid(stg.time[self.combobox_acoustic_data_choice.currentIndex()][0, :],
stg.depth[self.combobox_acoustic_data_choice.currentIndex()][0, :])
val_min = np.nanmin(stg.SNR_raw_data[self.combobox_acoustic_data_choice.currentIndex()][f, :, :])
val_max = np.nanmax(stg.SNR_raw_data[self.combobox_acoustic_data_choice.currentIndex()][f, :, :])
if val_min == val_max:
levels = np.array([00.1, 1, 2, 10, 100, 1000, 1e6])
bounds = [00.1, 1, 2, 10, 100, 1000, val_max * 1.2]
norm = BoundaryNorm(boundaries=bounds, ncolors=300)
else:
if val_min == 0:
val_min = 1e-5
if val_max > 1000:
levels = np.array([00.1, 1, 2, 10, 100, 1000, 1e6])
bounds = [00.1, 1, 2, 10, 100, 1000, val_max * 1.2]
norm = BoundaryNorm(boundaries=bounds, ncolors=300)
else:
levels = np.array([00.1, 1, 2, 10, 100, 1000, val_max*1000 + 1])
bounds = [00.1, 1, 2, 10, 100, 1000, val_max * 1000 + 1]
norm = BoundaryNorm(boundaries=bounds, ncolors=300)
cf = (self.axis_SNR[f].contourf(x, -y,
stg.SNR_raw_data[
self.combobox_acoustic_data_choice.currentIndex()][f, :, :],
levels, cmap='gist_rainbow', norm=norm))
self.axis_SNR[f].text(1, .70, stg.freq_text[self.combobox_acoustic_data_choice.currentIndex()][f],
fontsize=14, fontweight='bold', fontname="DejaVu Sans", c="black", alpha=0.5,
horizontalalignment='right', verticalalignment='bottom',
transform=self.axis_SNR[f].transAxes)
self.fig_SNR.supxlabel('Time (sec)', fontsize=10) self.fig_SNR.supxlabel('Time (sec)', fontsize=10)
self.fig_SNR.supylabel('Depth (m)', fontsize=10) self.fig_SNR.supylabel('Depth (m)', fontsize=10)
cbar = self.fig_SNR.colorbar(cf, ax=self.axis_SNR[:], shrink=1, location='right') cbar = self.fig_SNR.colorbar(
cbar.set_label(label='Signal to Noise Ratio', rotation=270, labelpad=10) cf, ax=self.axis_SNR[:],
cbar.set_ticklabels(['0', '1', '2', '10', '100', r'10$^3$', r'10$^6$']) shrink=1, location='right'
)
cbar.set_label(
label='Signal to Noise Ratio',
rotation=270, labelpad=10
)
cbar.set_ticklabels(
[
'0', '1', '2', '10', '100',
r'10$^3$', r'10$^6$'
]
)
self.fig_SNR.canvas.draw_idle() self.fig_SNR.canvas.draw_idle()
else: else:
self.verticalLayout_groupbox_plot_SNR.removeWidget(self.toolbar_SNR) self.verticalLayout_groupbox_plot_SNR.removeWidget(self.toolbar_SNR)
self.verticalLayout_groupbox_plot_SNR.removeWidget(self.scroll_SNR) self.verticalLayout_groupbox_plot_SNR.removeWidget(self.scroll_SNR)
@ -1439,9 +1396,6 @@ class SignalProcessingTab(QWidget):
x_time = stg.time[data_id] x_time = stg.time[data_id]
y_depth = stg.depth[data_id] y_depth = stg.depth[data_id]
logger.debug(f"x_time: {x_time[data_id].shape}")
logger.debug(f"y_depth: {y_depth[data_id].shape}")
for f, _ in enumerate(stg.freq[data_id]): for f, _ in enumerate(stg.freq[data_id]):
if stg.BS_stream_bed_pre_process_average[data_id].shape != (0,): if stg.BS_stream_bed_pre_process_average[data_id].shape != (0,):
BS_data = stg.BS_stream_bed_pre_process_average BS_data = stg.BS_stream_bed_pre_process_average
@ -1462,8 +1416,6 @@ class SignalProcessingTab(QWidget):
elif stg.BS_raw_data[data_id].shape != (0,): elif stg.BS_raw_data[data_id].shape != (0,):
BS_data = stg.BS_raw_data BS_data = stg.BS_raw_data
logger.debug(f"BS_data: {BS_data[data_id].shape}")
val_min = np.nanmin( val_min = np.nanmin(
BS_data[data_id][f, :, :] BS_data[data_id][f, :, :]
) )
@ -1574,19 +1526,9 @@ class SignalProcessingTab(QWidget):
) )
) )
if stg.time_cross_section[data_id].shape != (0,):
if stg.depth_cross_section[data_id].shape != (0,): if stg.depth_cross_section[data_id].shape != (0,):
x_time = stg.time_cross_section[data_id]
y_depth = stg.depth_cross_section[data_id] y_depth = stg.depth_cross_section[data_id]
elif stg.depth[data_id].shape != (0,): elif stg.depth[data_id].shape != (0,):
x_time = stg.time_cross_section[data_id]
y_depth = stg.depth[data_id]
else:
if stg.depth_cross_section[data_id].shape != (0,):
x_time = stg.time[data_id]
y_depth = stg.depth_cross_section[data_id]
elif stg.depth[data_id].shape != (0,):
x_time = stg.time[data_id]
y_depth = stg.depth[data_id] y_depth = stg.depth[data_id]
BS = [ BS = [
@ -1607,11 +1549,6 @@ class SignalProcessingTab(QWidget):
stg.BS_raw_data_pre_process_average, stg.BS_raw_data_pre_process_average,
] ]
time_shape, = x_time[data_id].shape
depth_shape, = y_depth[data_id].shape
logger.debug(f"time_shape: {time_shape}")
logger.debug(f"depth_shape: {depth_shape}")
BS_data = stg.BS_raw_data BS_data = stg.BS_raw_data
BS_data_ppa = stg.BS_raw_data_pre_process_average BS_data_ppa = stg.BS_raw_data_pre_process_average
for i in range(len(BS)): for i in range(len(BS)):
@ -1620,8 +1557,7 @@ class SignalProcessingTab(QWidget):
if bs[data_id].shape == (0,): if bs[data_id].shape == (0,):
continue continue
x, y, z = bs[data_id].shape if self._is_correct_shape(bs):
if y == depth_shape and z == time_shape:
BS_data = bs BS_data = bs
BS_data_ppa = BS_ppa[i] BS_data_ppa = BS_ppa[i]
break break