import sys from PyQt5.QtWidgets import (QWidget, QMainWindow, QApplication, QVBoxLayout, QHBoxLayout, QGroupBox, QComboBox, QGridLayout, QLabel, QPushButton, QSpinBox, QDoubleSpinBox, QAbstractSpinBox, QSpacerItem, QSizePolicy, QSlider, QLineEdit, QMessageBox) from PyQt5.QtCore import QCoreApplication, Qt, pyqtSignal from PyQt5.QtGui import QStandardItemModel, QIcon, QPixmap import numpy as np from itertools import combinations import matplotlib.pyplot as plt from matplotlib.colors import LogNorm, BoundaryNorm, CSS4_COLORS from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolBar import datetime from scipy import stats import Translation.constant_string as cs from View.checkable_combobox import CheckableComboBox import settings as stg from View.show_popup_combobox import ComboBoxShowPopUpWindow from Model.acoustic_inversion_method_high_concentration import AcousticInversionMethodHighConcentration _translate = QCoreApplication.translate def deleteItemsOfLayout(layout): if layout is not None: while layout.count(): item = layout.takeAt(0) widget = item.widget() if widget is not None: widget.setParent(None) else: deleteItemsOfLayout(item.layout()) class AcousticInversionTab(QWidget): ''' This class generates the Acoustic Inversion Tab ''' def __init__(self, widget_tab): super().__init__() self.path_icon = "./icons/" self.icon_folder = QIcon(self.path_icon + "folder.png") self.icon_triangle_left = QIcon(self.path_icon + "triangle_left.png") self.icon_triangle_left_to_begin = QIcon(self.path_icon + "triangle_left_to_begin.png") self.icon_triangle_right = QIcon(self.path_icon + "triangle_right.png") self.icon_triangle_right_to_end = QIcon(self.path_icon + "triangle_right_to_end.png") self.icon_update = QIcon(self.path_icon + "update.png") self.inv_hc = AcousticInversionMethodHighConcentration() ### --- General layout of widgets --- self.verticalLayoutMain = QVBoxLayout(widget_tab) self.horizontalLayout_Run_Inversion = QHBoxLayout() self.verticalLayoutMain.addLayout(self.horizontalLayout_Run_Inversion) self.horizontalLayoutTop = QHBoxLayout() self.verticalLayoutMain.addLayout(self.horizontalLayoutTop, 5) # 1O units is 100% , 1 units is 10% self.horizontalLayoutBottom = QHBoxLayout() self.verticalLayoutMain.addLayout(self.horizontalLayoutBottom, 5) ### --- Combobox acoustic data choice + pushbutton Run Inversion --- self.combobox_acoustic_data_choice = ComboBoxShowPopUpWindow() self.combobox_acoustic_data_choice.setMaximumWidth(300) self.horizontalLayout_Run_Inversion.addWidget(self.combobox_acoustic_data_choice) self.pushbutton_run_inversion = QPushButton() self.pushbutton_run_inversion.setText("RUN INVERSION") self.pushbutton_run_inversion.setMaximumWidth(100) self.horizontalLayout_Run_Inversion.addWidget(self.pushbutton_run_inversion) ### --- Layout of groupbox in the Top horizontal layout box # Plot SSC 2D field | SSC vertical profile | Plot SSC graph sample vs inversion ===>>> FINE self.groupbox_plot_SSC_fine = QGroupBox() self.horizontalLayoutTop.addWidget(self.groupbox_plot_SSC_fine, 6) self.groupbox_plot_SSC_fine_vertical_profile = QGroupBox() # self.horizontalLayoutTop.addWidget(self.groupbox_plot_SSC_fine_vertical_profile, 3) self.verticalLayout_groupbox_plot_SSC_fine_profile_and_slider = QVBoxLayout() self.horizontalLayoutTop.addLayout(self.verticalLayout_groupbox_plot_SSC_fine_profile_and_slider, 3) self.groupbox_plot_measured_vs_inverted_SSC_fine = QGroupBox() # self.horizontalLayoutTop.addWidget(self.groupbox_plot_measured_vs_inverted_SSC_fine, 3) self.verticalLayout_groupbox_plot_measured_vs_inverted_SSC_fine_and_combobox = QVBoxLayout() self.horizontalLayoutTop.addLayout(self.verticalLayout_groupbox_plot_measured_vs_inverted_SSC_fine_and_combobox, 3) ### --- Layout of groupbox in the Bottom horizontal layout box # Plot SSC 2D field | SSC vertical profile | Plot SSC graph sample vs inversion ===>>> SAND self.groupbox_plot_SSC_sand = QGroupBox() self.horizontalLayoutBottom.addWidget(self.groupbox_plot_SSC_sand, 6) self.groupbox_plot_SSC_sand_vertical_profile = QGroupBox() # self.horizontalLayoutBottom.addWidget(self.groupbox_plot_SSC_sand_vertical_profile, 3) self.verticalLayout_groupbox_plot_SSC_sand_profile_and_slider = QVBoxLayout() self.horizontalLayoutBottom.addLayout(self.verticalLayout_groupbox_plot_SSC_sand_profile_and_slider, 3) self.groupbox_plot_measured_vs_inverted_SSC_sand = QGroupBox() # self.horizontalLayoutBottom.addWidget(self.groupbox_plot_measured_vs_inverted_SSC_sand, 3) self.verticalLayout_groupbox_plot_measured_vs_inverted_SSC_sand_and_combobox = QVBoxLayout() self.horizontalLayoutBottom.addLayout(self.verticalLayout_groupbox_plot_measured_vs_inverted_SSC_sand_and_combobox, 3) # ===================================================== # TOP HORIZONTAL BOX LAYOUT # ===================================================== # +++++++++++++++++++++++++++++++++++++++ # | Group box SSC 2D Field FINE | # +++++++++++++++++++++++++++++++++++++++ self.verticalLayout_groupbox_plot_SSC_fine = QVBoxLayout(self.groupbox_plot_SSC_fine) self.canvas_SSC_fine = FigureCanvas() self.toolbar_SSC_fine = NavigationToolBar(self.canvas_SSC_fine, self) self.verticalLayout_groupbox_plot_SSC_fine.addWidget(self.toolbar_SSC_fine) self.verticalLayout_groupbox_plot_SSC_fine.addWidget(self.canvas_SSC_fine) # +++++++++++++++++++++++++++++++++++++++++++++++ # | Group box SSC fine vertical profile | # +++++++++++++++++++++++++++++++++++++++++++++++ self.verticalLayout_groupbox_plot_SSC_fine_profile_and_slider.addWidget(self.groupbox_plot_SSC_fine_vertical_profile) self.verticalLayout_groupbox_plot_vertical_profile_fine = QVBoxLayout( self.groupbox_plot_SSC_fine_vertical_profile) self.canvas_profile_fine = FigureCanvas() self.toolbar_profile_fine = NavigationToolBar(self.canvas_profile_fine, self) self.verticalLayout_groupbox_plot_vertical_profile_fine.addWidget(self.toolbar_profile_fine) self.verticalLayout_groupbox_plot_vertical_profile_fine.addWidget(self.canvas_profile_fine) self.horizontalLayout_slider_fine = QHBoxLayout() # self.verticalLayout_groupbox_plot_vertical_profile_fine.addLayout(self.horizontalLayout_slider_fine) self.verticalLayout_groupbox_plot_SSC_fine_profile_and_slider.addLayout(self.horizontalLayout_slider_fine) self.pushbutton_left_to_begin_fine = QPushButton() self.pushbutton_left_to_begin_fine.setIcon(self.icon_triangle_left_to_begin) self.horizontalLayout_slider_fine.addWidget(self.pushbutton_left_to_begin_fine) self.pushbutton_left_fine = QPushButton() self.pushbutton_left_fine.setIcon(self.icon_triangle_left) self.horizontalLayout_slider_fine.addWidget(self.pushbutton_left_fine) self.lineEdit_slider_fine = QLineEdit() self.lineEdit_slider_fine.setText("1") self.lineEdit_slider_fine.setFixedWidth(50) self.horizontalLayout_slider_fine.addWidget(self.lineEdit_slider_fine) self.pushbutton_right_fine = QPushButton() self.pushbutton_right_fine.setIcon(self.icon_triangle_right) self.horizontalLayout_slider_fine.addWidget(self.pushbutton_right_fine) self.pushbutton_right_to_end_fine = QPushButton() self.pushbutton_right_to_end_fine.setIcon(self.icon_triangle_right_to_end) self.horizontalLayout_slider_fine.addWidget(self.pushbutton_right_to_end_fine) self.slider_fine = QSlider() self.horizontalLayout_slider_fine.addWidget(self.slider_fine) self.slider_fine.setOrientation(Qt.Horizontal) self.slider_fine.setCursor(Qt.OpenHandCursor) self.slider_fine.setMinimum(1) self.slider_fine.setMaximum(10) self.slider_fine.setTickInterval(1) self.slider_fine.setValue(1) # +++++++++++++++++++++++++++++++++++++++++++++++++++ # | Group box Measured VS Inverted SSC Fine | # +++++++++++++++++++++++++++++++++++++++++++++++++++ self.verticalLayout_groupbox_plot_measured_vs_inverted_SSC_fine_and_combobox.addWidget( self.groupbox_plot_measured_vs_inverted_SSC_fine) self.verticalLayout_groupbox_plot_measured_vs_inverted_SSC_fine = QVBoxLayout( self.groupbox_plot_measured_vs_inverted_SSC_fine) self.canvas_inverted_vs_measured_SSC_fine = FigureCanvas() self.toolbar_inverted_vs_measured_SSC_fine = NavigationToolBar(self.canvas_inverted_vs_measured_SSC_fine, self) self.verticalLayout_groupbox_plot_measured_vs_inverted_SSC_fine.addWidget(self.toolbar_inverted_vs_measured_SSC_fine) self.verticalLayout_groupbox_plot_measured_vs_inverted_SSC_fine.addWidget(self.canvas_inverted_vs_measured_SSC_fine) self.horizontalLayout_combobox_fine_sample_choice = QHBoxLayout() # self.verticalLayout_groupbox_plot_measured_vs_inverted_SSC_fine.addLayout( # self.horizontalLayout_combobox_fine_sample_choice) self.verticalLayout_groupbox_plot_measured_vs_inverted_SSC_fine_and_combobox.addLayout( self.horizontalLayout_combobox_fine_sample_choice) self.label_fine_sample_choice = QLabel() self.label_fine_sample_choice.setText("Fine sample choice : ") self.horizontalLayout_combobox_fine_sample_choice.addWidget(self.label_fine_sample_choice) self.combobox_fine_sample_choice = CheckableComboBox() self.horizontalLayout_combobox_fine_sample_choice.addWidget(self.combobox_fine_sample_choice) self.pushbutton_plot_fine_sample_choice = QPushButton() self.pushbutton_plot_fine_sample_choice.setIcon(self.icon_update) self.pushbutton_plot_fine_sample_choice.setMaximumWidth(50) self.horizontalLayout_combobox_fine_sample_choice.addWidget(self.pushbutton_plot_fine_sample_choice) self.fine_sample_to_plot = [] # ===================================================== # BOTTOM HORIZONTAL BOX LAYOUT # ===================================================== # ++++++++++++++++++++++++++++++++++++++ # | Group box SSC 2D Field SAND | # ++++++++++++++++++++++++++++++++++++++ self.verticalLayout_groupbox_plot_SSC_sand = QVBoxLayout(self.groupbox_plot_SSC_sand) self.canvas_SSC_sand = FigureCanvas() self.toolbar_SSC_sand = NavigationToolBar(self.canvas_SSC_sand, self) self.verticalLayout_groupbox_plot_SSC_sand.addWidget(self.toolbar_SSC_sand) self.verticalLayout_groupbox_plot_SSC_sand.addWidget(self.canvas_SSC_sand) # +++++++++++++++++++++++++++++++++++++++++++++++ # | Group box SSC sand vertical profile | # +++++++++++++++++++++++++++++++++++++++++++++++ self.verticalLayout_groupbox_plot_SSC_sand_profile_and_slider.addWidget( self.groupbox_plot_SSC_sand_vertical_profile) self.verticalLayout_groupbox_plot_vertical_profile_sand = QVBoxLayout( self.groupbox_plot_SSC_sand_vertical_profile) self.canvas_profile_sand = FigureCanvas() self.toolbar_profile_sand = NavigationToolBar(self.canvas_profile_sand, self) self.verticalLayout_groupbox_plot_vertical_profile_sand.addWidget(self.toolbar_profile_sand) self.verticalLayout_groupbox_plot_vertical_profile_sand.addWidget(self.canvas_profile_sand) self.horizontalLayout_slider_sand = QHBoxLayout() # self.verticalLayout_groupbox_plot_vertical_profile_sand.addLayout(self.horizontalLayout_slider_sand) self.verticalLayout_groupbox_plot_SSC_sand_profile_and_slider.addLayout(self.horizontalLayout_slider_sand) self.pushbutton_left_to_begin_sand = QPushButton() self.pushbutton_left_to_begin_sand.setIcon(self.icon_triangle_left_to_begin) self.horizontalLayout_slider_sand.addWidget(self.pushbutton_left_to_begin_sand) self.pushbutton_left_sand = QPushButton() self.pushbutton_left_sand.setIcon(self.icon_triangle_left) self.horizontalLayout_slider_sand.addWidget(self.pushbutton_left_sand) self.lineEdit_slider_sand = QLineEdit() self.lineEdit_slider_sand.setText("1") self.lineEdit_slider_sand.setFixedWidth(50) self.horizontalLayout_slider_sand.addWidget(self.lineEdit_slider_sand) self.pushbutton_right_sand = QPushButton() self.pushbutton_right_sand.setIcon(self.icon_triangle_right) self.horizontalLayout_slider_sand.addWidget(self.pushbutton_right_sand) self.pushbutton_right_to_end_sand = QPushButton() self.pushbutton_right_to_end_sand.setIcon(self.icon_triangle_right_to_end) self.horizontalLayout_slider_sand.addWidget(self.pushbutton_right_to_end_sand) self.slider_sand = QSlider() self.horizontalLayout_slider_sand.addWidget(self.slider_sand) self.slider_sand.setOrientation(Qt.Horizontal) self.slider_sand.setCursor(Qt.OpenHandCursor) self.slider_sand.setMinimum(1) self.slider_sand.setMaximum(10) self.slider_sand.setTickInterval(1) self.slider_sand.setValue(1) # +++++++++++++++++++++++++++++++++++++++++++++++++++ # | Group box Measured VS Inverted SSC Sand | # +++++++++++++++++++++++++++++++++++++++++++++++++++ self.verticalLayout_groupbox_plot_measured_vs_inverted_SSC_sand_and_combobox.addWidget( self.groupbox_plot_measured_vs_inverted_SSC_sand) self.verticalLayout_groupbox_plot_measured_vs_inverted_SSC_sand = QVBoxLayout( self.groupbox_plot_measured_vs_inverted_SSC_sand) self.canvas_inverted_vs_measured_SSC_sand = FigureCanvas() self.toolbar_inverted_vs_measured_SSC_sand = NavigationToolBar(self.canvas_inverted_vs_measured_SSC_sand, self) self.verticalLayout_groupbox_plot_measured_vs_inverted_SSC_sand.addWidget( self.toolbar_inverted_vs_measured_SSC_sand) self.verticalLayout_groupbox_plot_measured_vs_inverted_SSC_sand.addWidget( self.canvas_inverted_vs_measured_SSC_sand) self.horizontalLayout_combobox_sand_sample_choice = QHBoxLayout() # self.verticalLayout_groupbox_plot_measured_vs_inverted_SSC_sand.addLayout( # self.horizontalLayout_combobox_sand_sample_choice) self.verticalLayout_groupbox_plot_measured_vs_inverted_SSC_sand_and_combobox.addLayout( self.horizontalLayout_combobox_sand_sample_choice) self.label_sand_sample_choice = QLabel() self.label_sand_sample_choice.setText("Sand sample choice : ") self.horizontalLayout_combobox_sand_sample_choice.addWidget(self.label_sand_sample_choice) self.combobox_sand_sample_choice = CheckableComboBox() self.horizontalLayout_combobox_sand_sample_choice.addWidget(self.combobox_sand_sample_choice) self.pushbutton_plot_sand_sample_choice = QPushButton() self.pushbutton_plot_sand_sample_choice.setIcon(self.icon_update) self.pushbutton_plot_sand_sample_choice.setMaximumWidth(50) self.horizontalLayout_combobox_sand_sample_choice.addWidget(self.pushbutton_plot_sand_sample_choice) # ============================================================================================================== # ---------------------------------------- Connect signal of widget -------------------------------------------- # ============================================================================================================== self.combobox_acoustic_data_choice.ShowPopUpWindowSignal.connect(self.event_combobobx_acoustic_data_choice) self.pushbutton_run_inversion.clicked.connect(self.function_run_inversion) self.pushbutton_left_to_begin_fine.clicked.connect(self.slider_profile_number_to_begin_fine) self.pushbutton_left_fine.clicked.connect(self.slider_profile_number_to_left_fine) self.pushbutton_right_fine.clicked.connect(self.slider_profile_number_to_right_fine) self.pushbutton_right_to_end_fine.clicked.connect(self.slider_profile_number_to_end_fine) self.lineEdit_slider_fine.returnPressed.connect(self.profile_number_on_lineEdit_fine) self.slider_fine.valueChanged.connect(self.update_lineEdit_by_moving_slider_fine) self.slider_fine.valueChanged.connect(self.update_plot_SSC_fine_vertical_profile) self.pushbutton_plot_fine_sample_choice.clicked.connect(self.plot_measured_vs_inverted_SSC_fine) self.pushbutton_left_to_begin_sand.clicked.connect(self.slider_profile_number_to_begin_sand) self.pushbutton_left_sand.clicked.connect(self.slider_profile_number_to_left_sand) self.pushbutton_right_sand.clicked.connect(self.slider_profile_number_to_right_sand) self.pushbutton_right_to_end_sand.clicked.connect(self.slider_profile_number_to_end_sand) self.lineEdit_slider_sand.returnPressed.connect(self.profile_number_on_lineEdit_sand) self.slider_sand.valueChanged.connect(self.update_lineEdit_by_moving_slider_sand) self.slider_sand.valueChanged.connect(self.update_plot_SSC_sand_vertical_profile) self.pushbutton_plot_sand_sample_choice.clicked.connect(self.plot_measured_vs_inverted_SSC_sand) # ================================================================================================================== # ------------------------------------ Functions for Acoustic Inversion Tab ---------------------------------------- # ================================================================================================================== def event_combobobx_acoustic_data_choice(self): print("(stg.filename_BS_noise_data ", (stg.filename_BS_noise_data)) self.combobox_acoustic_data_choice.clear() # self.combobox_fileListWidget.addItem("") for i in range(len(stg.filename_BS_raw_data)): self.combobox_acoustic_data_choice.addItem(stg.filename_BS_raw_data[i]) self.combobox_acoustic_data_choice.currentIndexChanged.connect(self.combobox_acoustic_data_choice_currentIndexChanged) def combobox_acoustic_data_choice_currentIndexChanged(self): self.fill_combobox_fine_sample() self.plot_SSC_fine() self.plot_SSC_fine_vertical_profile() self.plot_measured_vs_inverted_SSC_fine() self.fill_combobox_sand_sample() self.plot_SSC_sand() self.plot_SSC_sand_vertical_profile() self.plot_measured_vs_inverted_SSC_sand() def function_run_inversion(self): if (stg.alpha_s[0] < 0) or (stg.alpha_s[1] < 0): msgBox = QMessageBox() msgBox.setWindowTitle("Alpha computation error") msgBox.setIconPixmap( QPixmap(self.path_icon + "no_approved.png").scaledToHeight(32, Qt.SmoothTransformation)) msgBox.setText("Sediment sound attenuation is negative !") msgBox.setStandardButtons(QMessageBox.Ok) msgBox.exec() else: self.compute_VBI() self.compute_SSC_fine() self.compute_SSC_sand() self.fill_combobox_fine_sample() self.plot_SSC_fine() self.plot_SSC_fine_vertical_profile() self.plot_measured_vs_inverted_SSC_fine() self.fill_combobox_sand_sample() self.plot_SSC_sand() self.plot_SSC_sand_vertical_profile() self.plot_measured_vs_inverted_SSC_sand() def compute_VBI(self): stg.VBI_cross_section[self.combobox_acoustic_data_choice.currentIndex()] = np.array([]) print("compute VBI") print(stg.frequencies_for_calibration[0][0], stg.frequencies_for_calibration[1][0]) print(stg.frequency_for_inversion) print(stg.zeta[0], stg.zeta[1]) print(stg.J_cross_section[0].shape, stg.J_cross_section[0].shape) print(stg.depth_2D[self.combobox_acoustic_data_choice.currentIndex()].shape) print(stg.alpha_s[0], stg.alpha_s[1]) print(stg.X_exponent[0]) stg.VBI_cross_section[self.combobox_acoustic_data_choice.currentIndex()] = self.inv_hc.VBI_cross_section( freq1=stg.frequencies_for_calibration[0][0], freq2=stg.frequencies_for_calibration[1][0], zeta_freq1=stg.zeta[0], zeta_freq2=stg.zeta[1], j_cross_section_freq1=stg.J_cross_section[0], j_cross_section_freq2=stg.J_cross_section[1], r2D=stg.depth_2D[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]], water_attenuation_freq1=stg.alpha_s[0], water_attenuation_freq2=stg.alpha_s[1], X=stg.X_exponent[0] ) print("compute VBI end") def compute_SSC_fine(self): stg.SSC_fine[self.combobox_acoustic_data_choice.currentIndex()] = np.array([]) print("Compute SSC fine - start") print(stg.zeta[1]) print(stg.depth_2D[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]].shape) # print(stg.VBI_cross_section.shape) print(stg.frequencies_for_calibration[1][0]) print(stg.X_exponent[0]) print(stg.J_cross_section[1].shape) print(stg.water_attenuation) print(np.full(shape=stg.depth_2D[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]].shape, fill_value=stg.water_attenuation[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]])) stg.SSC_fine[self.combobox_acoustic_data_choice.currentIndex()] = self.inv_hc.SSC_fine( zeta=stg.zeta[1], r2D=stg.depth_2D[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]], VBI=stg.VBI_cross_section[self.combobox_acoustic_data_choice.currentIndex()], freq=stg.frequencies_for_calibration[1][0], X=stg.X_exponent[0], j_cross_section=stg.J_cross_section[1], alpha_w=np.full(shape=stg.depth_2D[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]].shape, fill_value=stg.water_attenuation[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]]) ) print("stg.SSC_fine ", stg.SSC_fine) def compute_SSC_sand(self): stg.SSC_sand[self.combobox_acoustic_data_choice.currentIndex()] = np.array([]) print("+++++++++++++++++++++") print(stg.VBI_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape) print(stg.frequencies_for_calibration[1][0]) print(stg.X_exponent) print(stg.ks[1]) print("+++++++++++++++++++++") stg.SSC_sand[self.combobox_acoustic_data_choice.currentIndex()] = self.inv_hc.SSC_sand( VBI=stg.VBI_cross_section[self.combobox_acoustic_data_choice.currentIndex()], freq=stg.frequencies_for_calibration[1][0], X=stg.X_exponent, ks=stg.ks[1]) print("stg.SSC_sand ", stg.SSC_sand) def plot_SSC_fine(self): if self.combobox_acoustic_data_choice.count() > 0: if stg.SSC_fine[self.combobox_acoustic_data_choice.currentIndex()].shape == (0,): self.verticalLayout_groupbox_plot_SSC_fine.removeWidget(self.toolbar_SSC_fine) self.verticalLayout_groupbox_plot_SSC_fine.removeWidget(self.canvas_SSC_fine) self.canvas_SSC_fine = FigureCanvas() self.toolbar_SSC_fine = NavigationToolBar(self.canvas_SSC_fine, self) self.verticalLayout_groupbox_plot_SSC_fine.addWidget(self.toolbar_SSC_fine) self.verticalLayout_groupbox_plot_SSC_fine.addWidget(self.canvas_SSC_fine) elif stg.SSC_fine[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,): self.verticalLayout_groupbox_plot_SSC_fine.removeWidget(self.toolbar_SSC_fine) self.verticalLayout_groupbox_plot_SSC_fine.removeWidget(self.canvas_SSC_fine) self.figure_SSC_fine, self.axis_SSC_fine = plt.subplots(nrows=1, ncols=1, layout="constrained") self.canvas_SSC_fine = FigureCanvas(self.figure_SSC_fine) self.toolbar_SSC_fine = NavigationToolBar(self.canvas_SSC_fine, self) self.verticalLayout_groupbox_plot_SSC_fine.addWidget(self.toolbar_SSC_fine) self.verticalLayout_groupbox_plot_SSC_fine.addWidget(self.canvas_SSC_fine) val_min = np.nanmin(stg.SSC_fine[self.combobox_acoustic_data_choice.currentIndex()]) val_max = np.nanmax(stg.SSC_fine[self.combobox_acoustic_data_choice.currentIndex()]) print("ABS name ", stg.ABS_name) if stg.ABS_name[0] == "Aquascat 1000R": print("hey !") if stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,): print("hey hey !") # print("time cross section ", stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ # stg.frequency_for_inversion[1]]) # print("depth cross section ", stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ # stg.frequency_for_inversion[1]]) # print(stg.frequency_for_inversion[1]) pcm_SSC_fine = self.axis_SSC_fine.pcolormesh( stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]], -stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]], stg.SSC_fine[self.combobox_acoustic_data_choice.currentIndex()], cmap='rainbow', norm=LogNorm(vmin=1e0, vmax=15), shading='gouraud') if stg.depth_bottom[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,): self.axis_SSC_fine.plot(stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]], -stg.depth_bottom[self.combobox_acoustic_data_choice.currentIndex()], color='black', linewidth=1, linestyle="solid") self.pcm_SSC_fine_vertical_line, = self.axis_SSC_fine.plot( stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1], self.slider_fine.value() - 1] * np.ones(stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]].shape), -stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]], linestyle="solid", color='r', linewidth=2) print("o+o+o+o+o+o") print(stg.frequency_for_inversion[1]) print([i for i, _ in stg.fine_sample_position]) # print([stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ # stg.frequency_for_inversion[1], i] # for i, _ in stg.fine_sample_position]) print("o+o+o+o+o+o") # self.pcm_SSC_fine_meas_vs_inv, = self.axis_SSC_fine.plot( # [stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ # stg.frequency_for_inversion[1], i] # for i, _ in stg.fine_sample_position], # [-stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ # stg.frequency_for_inversion[1], j] # for _, j in stg.fine_sample_position], # ls=" ", marker="o", ms=5, mec="k", mfc="k") self.pcm_SSC_fine_meas_vs_inv, = self.axis_SSC_fine.plot(stg.time_fine, stg.depth_fine, ls=" ", marker="o", ms=5, mec="k", mfc="k") print(stg.time_fine) print(stg.depth_fine) print([f for _, f in stg.sample_fine]) for i, j in stg.sample_fine: self.pcm_SSC_fine_meas_vs_inv_text = self.axis_SSC_fine.text( stg.time_fine[j], stg.depth_fine[j], i) else: pcm_SSC_fine = self.axis_SSC_fine.pcolormesh( stg.time[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]], -stg.depth[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]], stg.SSC_fine[self.combobox_acoustic_data_choice.currentIndex()], cmap='rainbow', norm=LogNorm(vmin=1e0, vmax=15), shading='gouraud') self.pcm_SSC_fine_vertical_line, = self.axis_SSC_fine.plot( stg.time[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1], self.slider_fine.value() - 1] * np.ones(stg.depth[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[ 1]].shape), -stg.depth[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]], linestyle="solid", color='r', linewidth=2) if stg.depth_bottom[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,): self.axis_SSC_fine.plot(stg.time[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]], -stg.depth_bottom[self.combobox_acoustic_data_choice.currentIndex()], color='black', linewidth=1, linestyle="solid") self.pcm_SSC_fine_meas_vs_inv, = self.axis_SSC_fine.plot(stg.time_fine, stg.depth_fine, ls=" ", marker="o", ms=5, mec="k", mfc="k") print(stg.time_fine) print(stg.depth_fine) print([f for _, f in stg.sample_fine]) for i, j in stg.sample_fine: self.pcm_SSC_fine_meas_vs_inv_text = self.axis_SSC_fine.text( stg.time_fine[j], stg.depth_fine[j], i) # self.pcm_SSC_fine_meas_vs_inv, = self.axis_SSC_fine.plot( # [stg.time[self.combobox_acoustic_data_choice.currentIndex()][ # stg.frequency_for_inversion[1], i] # for i, _ in stg.fine_sample_position], # [-stg.depth[self.combobox_acoustic_data_choice.currentIndex()][ # stg.frequency_for_inversion[1], j] # for _, j in stg.fine_sample_position], # ls=" ", marker="o", ms=5, mec="k", mfc="k") cbar_SSC_fine = self.figure_SSC_fine.colorbar(pcm_SSC_fine, ax=self.axis_SSC_fine, shrink=1, location='right') cbar_SSC_fine.set_label(label='Fine SSC (g/L', rotation=270, labelpad=15) elif stg.ABS_name[0] == "UB-SediFlow": pcm_SSC_fine = self.axis_SSC_fine.pcolormesh(stg.t[0, :], -stg.r[0, :], stg.SSC_fine, cmap='rainbow', norm=LogNorm(vmin=1e-2, vmax=10), shading='gouraud') self.figure_SSC_fine.supxlabel("Time (sec)", fontsize=10) self.figure_SSC_fine.supylabel("Depth (m)", fontsize=10) self.figure_SSC_fine.canvas.draw_idle() def plot_SSC_fine_vertical_profile(self): if self.combobox_acoustic_data_choice.count() > 0: if stg.SSC_fine[self.combobox_acoustic_data_choice.currentIndex()].shape == (0,): self.verticalLayout_groupbox_plot_vertical_profile_fine.removeWidget(self.toolbar_profile_fine) self.verticalLayout_groupbox_plot_vertical_profile_fine.removeWidget(self.canvas_profile_fine) self.canvas_profile_fine = FigureCanvas() self.toolbar_profile_fine = NavigationToolBar(self.canvas_profile_fine, self) self.verticalLayout_groupbox_plot_vertical_profile_fine.addWidget(self.toolbar_profile_fine) self.verticalLayout_groupbox_plot_vertical_profile_fine.addWidget(self.canvas_profile_fine) if stg.SSC_fine[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,): self.slider_fine.setMaximum(stg.SSC_fine[self.combobox_acoustic_data_choice.currentIndex()].shape[1]) self.verticalLayout_groupbox_plot_vertical_profile_fine.removeWidget(self.toolbar_profile_fine) self.verticalLayout_groupbox_plot_vertical_profile_fine.removeWidget(self.canvas_profile_fine) self.figure_vertical_profile_SSC_fine, self.axis_vertical_profile_SSC_fine = plt.subplots( nrows=1, ncols=1, layout="constrained") self.canvas_profile_fine = FigureCanvas(self.figure_vertical_profile_SSC_fine) self.toolbar_profile_fine = NavigationToolBar(self.canvas_profile_fine, self) self.verticalLayout_groupbox_plot_vertical_profile_fine.addWidget(self.toolbar_profile_fine) self.verticalLayout_groupbox_plot_vertical_profile_fine.addWidget(self.canvas_profile_fine) if stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,): self.plot_fine , = self.axis_vertical_profile_SSC_fine.plot( stg.SSC_fine[self.combobox_acoustic_data_choice.currentIndex()][:, self.slider_fine.value() -1], -stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]], linestyle="solid", linewidth=1, color="k") self.pcm_SSC_fine_vertical_line.set_data( stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1], self.slider_fine.value() - 1] * np.ones(stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]].shape), -stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]]) self.figure_SSC_fine.canvas.draw_idle() self.axis_vertical_profile_SSC_fine.set_ylim( [-np.nanmax(stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]]), -np.nanmin(stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]])]) else: self.plot_fine , = self.axis_vertical_profile_SSC_fine.plot( stg.SSC_fine[self.combobox_acoustic_data_choice.currentIndex()][:, self.slider_fine.value() -1], -stg.depth[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]], linestyle="solid", linewidth=1, color="k") self.pcm_SSC_fine_vertical_line.set_data( stg.time[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1], self.slider_fine.value() - 1] * np.ones(stg.depth[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]].shape), -stg.depth[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]]) self.figure_SSC_fine.canvas.draw_idle() self.axis_vertical_profile_SSC_fine.set_ylim( [-np.nanmax(stg.depth[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]]), -np.nanmin(stg.depth[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]])]) # self.axis_SSC_fine.plot([], [], ) self.axis_vertical_profile_SSC_fine.set_xlabel("Inverted Fine SSC (g/L)") self.axis_vertical_profile_SSC_fine.set_ylabel("Depth (m)") self.figure_vertical_profile_SSC_fine.canvas.draw_idle() def update_plot_SSC_fine_vertical_profile(self): if stg.filename_BS_noise_data != []: if stg.SSC_fine[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,): if stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,): self.plot_fine.set_data( stg.SSC_fine[self.combobox_acoustic_data_choice.currentIndex()][:, self.slider_fine.value() - 1], -stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]]) self.pcm_SSC_fine_vertical_line.set_data( stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1], self.slider_fine.value() - 1] * np.ones(stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]].shape), -stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]]) self.figure_SSC_fine.canvas.draw_idle() self.axis_vertical_profile_SSC_fine.set_ylim( [-np.nanmax(stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]]), -np.nanmin(stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]])]) else: self.plot_fine.set_data( stg.SSC_fine[self.combobox_acoustic_data_choice.currentIndex()][:, self.slider_fine.value() - 1], -stg.depth[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]]) self.pcm_SSC_fine_vertical_line.set_data( stg.time[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1], self.slider_fine.value() - 1] * np.ones(stg.depth[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]].shape), -stg.depth[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]]) self.figure_SSC_fine.canvas.draw_idle() self.axis_vertical_profile_SSC_fine.set_ylim( [-np.nanmax(stg.depth[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]]), -np.nanmin(stg.depth[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]])]) self.axis_vertical_profile_SSC_fine.set_xlabel("Inverted Fine SSC (g/L)") self.axis_vertical_profile_SSC_fine.set_ylabel("Depth (m)") self.figure_vertical_profile_SSC_fine.canvas.draw_idle() def slider_profile_number_to_begin_fine(self): self.slider_fine.setValue(int(self.slider_fine.minimum())) self.lineEdit_slider_fine.setText(str(self.slider_fine.value())) def slider_profile_number_to_right_fine(self): self.slider_fine.setValue(int(self.slider_fine.value()) + 1) self.lineEdit_slider_fine.setText(str(self.slider_fine.value())) def slider_profile_number_to_left_fine(self): self.slider_fine.setValue(int(self.slider_fine.value()) - 1) self.lineEdit_slider_fine.setText(str(self.slider_fine.value())) def slider_profile_number_to_end_fine(self): self.slider_fine.setValue(int(self.slider_fine.maximum())) self.lineEdit_slider_fine.setText(str(self.slider_fine.value())) def profile_number_on_lineEdit_fine(self): self.slider_fine.setValue(int(self.lineEdit_slider_fine.text())) def update_lineEdit_by_moving_slider_fine(self): self.lineEdit_slider_fine.setText(str(self.slider_fine.value())) # --- Plot fine SSC : measured vs inverted --- def fill_combobox_fine_sample(self): print("stg.sample_fine ", stg.sample_fine) self.combobox_fine_sample_choice.addItems([f for f, _ in stg.sample_fine]) # --- Get position (index, value) of sample in acoustic measurement space --- if ((stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,)) and (stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,))): print(stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]]) print(stg.depth_fine) for j in range(len(stg.time_fine)): (stg.fine_sample_position. append( ( np.where( np.abs(stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]] - stg.time_fine[j]) == np.nanmin(np.abs(stg.time_cross_section[ self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]] - stg.time_fine[j])) )[0][0], np.where( np.abs(stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]] - (-stg.depth_fine[j])) == np.nanmin(np.abs(stg.depth_cross_section[ self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]] - (-stg.depth_fine[j]))) )[0][0] ) ) ) print("0 stg.fine_sample_position ", stg.fine_sample_position) elif ((stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,)) and (stg.depth[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,))): for j in range(len(stg.time_fine)): (stg.fine_sample_position. append( ( np.where( np.abs(stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]] - stg.time_fine[j]) == np.nanmin(np.abs(stg.time_cross_section[ self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]] - stg.time_fine[j])) )[0][0], np.where( np.abs(stg.depth[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]] - (-stg.depth_fine[j])) == np.nanmin(np.abs(stg.depth[ self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]] - (-stg.depth_fine[j]))) )[0][0] ) ) ) print("1 stg.fine_sample_position ", stg.fine_sample_position) elif ((stg.time[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,)) and (stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,))): for j in range(len(stg.time_fine)): (stg.fine_sample_position. append( ( np.where( np.abs(stg.time[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]] - stg.time_fine[j]) == np.nanmin(np.abs(stg.time[ self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]] - stg.time_fine[j])) )[0][0], np.where( np.abs(stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]] - (-stg.depth_fine[j])) == np.nanmin(np.abs(stg.depth_cross_section[ self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]] - (-stg.depth_fine[j]))) )[0][0] ) ) ) print("2 stg.fine_sample_position ", stg.fine_sample_position) elif ((stg.time[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,)) and (stg.depth[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,))): for j in range(len(stg.time_fine)): (stg.fine_sample_position. append( ( np.where( np.abs(stg.time[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]] - stg.time_fine[j]) == np.nanmin(np.abs(stg.time[ self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]] - stg.time_fine[j])) )[0][0], np.where( np.abs(stg.depth[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]] - (-stg.depth_fine[j])) == np.nanmin(np.abs(stg.depth[ self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]] - (-stg.depth_fine[j]))) )[0][0] ) ) ) print("3 stg.fine_sample_position ", stg.fine_sample_position) def plot_measured_vs_inverted_SSC_fine(self): if self.combobox_acoustic_data_choice.count() > 0: if stg.SSC_fine[self.combobox_acoustic_data_choice.currentIndex()].shape == (0,): self.verticalLayout_groupbox_plot_measured_vs_inverted_SSC_fine.removeWidget(self.toolbar_inverted_vs_measured_SSC_fine) self.verticalLayout_groupbox_plot_measured_vs_inverted_SSC_fine.removeWidget(self.canvas_inverted_vs_measured_SSC_fine) self.canvas_inverted_vs_measured_SSC_fine = FigureCanvas() self.toolbar_inverted_vs_measured_SSC_fine = NavigationToolBar(self.canvas_inverted_vs_measured_SSC_fine, self) self.verticalLayout_groupbox_plot_measured_vs_inverted_SSC_fine.addWidget(self.toolbar_inverted_vs_measured_SSC_fine) self.verticalLayout_groupbox_plot_measured_vs_inverted_SSC_fine.addWidget(self.canvas_inverted_vs_measured_SSC_fine) else: self.verticalLayout_groupbox_plot_measured_vs_inverted_SSC_fine.removeWidget(self.toolbar_inverted_vs_measured_SSC_fine) self.verticalLayout_groupbox_plot_measured_vs_inverted_SSC_fine.removeWidget(self.canvas_inverted_vs_measured_SSC_fine) self.figure_measured_vs_inverted_fine, self.axis_measured_vs_inverted_fine = ( plt.subplots(nrows=1, ncols=1, layout="constrained")) self.canvas_inverted_vs_measured_SSC_fine = FigureCanvas(self.figure_measured_vs_inverted_fine) self.toolbar_inverted_vs_measured_SSC_fine = NavigationToolBar(self.canvas_inverted_vs_measured_SSC_fine, self) self.verticalLayout_groupbox_plot_measured_vs_inverted_SSC_fine.addWidget(self.toolbar_inverted_vs_measured_SSC_fine) self.verticalLayout_groupbox_plot_measured_vs_inverted_SSC_fine.addWidget(self.canvas_inverted_vs_measured_SSC_fine) print("self.combobox_fine_sample_choice.currentData() ", self.combobox_fine_sample_choice.currentData()) print("self.combobox_fine_sample_choice.currentIndex() ", self.combobox_fine_sample_choice.currentIndex()) print("///////////////////////////////////////////////////") self.fine_sample_to_plot = [int(f[1:]) - 1 for f in self.combobox_fine_sample_choice.currentData()] print("self.fine_sample_to_plot ", self.fine_sample_to_plot) # for k in self.fine_sample_to_plot: # print("stg.Ctot_fine[k] ", stg.Ctot_fine[k]) # print(stg.fine_sample_position[k][1]) # print(stg.fine_sample_position[k][0]) # print(stg.SSC_fine[self.combobox_acoustic_data_choice.currentIndex()][ # stg.fine_sample_position[k][1], # stg.fine_sample_position[k][0]]) if self.fine_sample_to_plot: self.axis_measured_vs_inverted_fine.plot( [stg.Ctot_fine[k] for k in self.fine_sample_to_plot], [stg.SSC_fine[self.combobox_acoustic_data_choice.currentIndex()][ stg.fine_sample_position[k][1], stg.fine_sample_position[k][0]] for k in self.fine_sample_to_plot], ls=" ", marker='o', ms=5, mec='black', mfc="black" ) self.axis_measured_vs_inverted_fine.plot( [0, np.nanmax([np.nanmax([stg.Ctot_fine[c] for c in self.fine_sample_to_plot]), np.nanmax([stg.SSC_fine[self.combobox_acoustic_data_choice.currentIndex()][ stg.fine_sample_position[i][1], stg.fine_sample_position[i][0]] for i in self.fine_sample_to_plot]) ]) + 1], [0, np.nanmax([np.nanmax([stg.Ctot_fine[c] for c in self.fine_sample_to_plot]), np.nanmax([stg.SSC_fine[self.combobox_acoustic_data_choice.currentIndex()][ stg.fine_sample_position[i][1], stg.fine_sample_position[i][0]] for i in self.fine_sample_to_plot])]) + 1], ls="solid", linewidth=1, color="k" ) # --- Display sample label on plot --- for i in self.fine_sample_to_plot: self.axis_measured_vs_inverted_fine.text( stg.Ctot_fine[i], stg.SSC_fine[self.combobox_acoustic_data_choice.currentIndex()][ stg.fine_sample_position[i][1], stg.fine_sample_position[i][0]], stg.sample_fine[i][0], fontstyle="normal", fontweight="light", fontsize=10) else: self.axis_measured_vs_inverted_fine.plot( [stg.Ctot_fine[k] for k in range(len(stg.sample_fine))], [stg.SSC_fine[self.combobox_acoustic_data_choice.currentIndex()][ stg.fine_sample_position[k][1], stg.fine_sample_position[k][0]] for k in range(len(stg.sample_fine))], ls=" ", marker='o', ms=5, mec='black', mfc="black" ) self.axis_measured_vs_inverted_fine.plot( [0, np.nanmax([np.nanmax([stg.Ctot_fine[c] for c in range(len(stg.sample_fine))]), np.nanmax([stg.SSC_fine[self.combobox_acoustic_data_choice.currentIndex()][ stg.fine_sample_position[i][1], stg.fine_sample_position[i][0]] for i in range(len(stg.sample_fine))])]) + 1], [0, np.nanmax([np.nanmax([stg.Ctot_fine[c] for c in range(len(stg.sample_fine))]), np.nanmax([stg.SSC_fine[self.combobox_acoustic_data_choice.currentIndex()][ stg.fine_sample_position[i][1], stg.fine_sample_position[i][0]] for i in range(len(stg.sample_fine))])]) + 1], ls="solid", linewidth=1, color="k" ) for j in range(len(stg.sample_fine)): self.axis_measured_vs_inverted_fine.text( stg.Ctot_fine[j], stg.SSC_fine[self.combobox_acoustic_data_choice.currentIndex()][ stg.fine_sample_position[j][1], stg.fine_sample_position[j][0]], stg.sample_fine[j][0], fontstyle="normal", fontweight="light", fontsize=10) self.axis_measured_vs_inverted_fine.set_xlabel("Measured SSC fine (g/L)") self.axis_measured_vs_inverted_fine.set_ylabel("Inverted SSC fine (g/L)") self.figure_measured_vs_inverted_fine.canvas.draw_idle() def update_plot_sample_position_on_concentration_field(self): # --- Plot sample position on concentration field --- # self.pcm_SSC_fine_meas_vs_inv.set_data( # [stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ # stg.frequency_for_inversion[1], # stg.fine_sample_position[i][0]] # for i in self.fine_sample_to_plot], # [-stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ # stg.frequency_for_inversion[1], # stg.fine_sample_position[j][1]] # for j in self.fine_sample_to_plot] # ) self.pcm_SSC_fine_meas_vs_inv.set_data([stg.time_fine[i] for i in self.fine_sample_to_plot], [stg.depth_fine[j] for j in self.fine_sample_to_plot]) self.figure_SSC_fine.canvas.draw_idle() for i in self.fine_sample_to_plot: self.pcm_SSC_fine_meas_vs_inv_text.set_text(stg.sample_fine[i][0]) self.pcm_SSC_fine_meas_vs_inv_text.set_position(stg.time_fine[i], stg.depth_fine[i]) self.figure_SSC_fine.canvas.draw_idle() def plot_SSC_sand(self): if self.combobox_acoustic_data_choice.count() > 0: if stg.SSC_sand[self.combobox_acoustic_data_choice.currentIndex()].shape == (0,): self.verticalLayout_groupbox_plot_SSC_sand.removeWidget(self.toolbar_SSC_sand) self.verticalLayout_groupbox_plot_SSC_sand.removeWidget(self.canvas_SSC_sand) self.canvas_SSC_sand = FigureCanvas() self.toolbar_SSC_sand = NavigationToolBar(self.canvas_SSC_sand, self) self.verticalLayout_groupbox_plot_SSC_sand.addWidget(self.toolbar_SSC_sand) self.verticalLayout_groupbox_plot_SSC_sand.addWidget(self.canvas_SSC_sand) else: self.verticalLayout_groupbox_plot_SSC_sand.removeWidget(self.toolbar_SSC_sand) self.verticalLayout_groupbox_plot_SSC_sand.removeWidget(self.canvas_SSC_sand) self.figure_SSC_sand, self.axis_SSC_sand = plt.subplots(nrows=1, ncols=1, layout="constrained") self.canvas_SSC_sand = FigureCanvas(self.figure_SSC_sand) self.toolbar_SSC_sand = NavigationToolBar(self.canvas_SSC_sand, self) self.verticalLayout_groupbox_plot_SSC_sand.addWidget(self.toolbar_SSC_sand) self.verticalLayout_groupbox_plot_SSC_sand.addWidget(self.canvas_SSC_sand) val_min = np.nanmin(stg.SSC_sand[self.combobox_acoustic_data_choice.currentIndex()]) val_max = np.nanmax(stg.SSC_sand[self.combobox_acoustic_data_choice.currentIndex()]) print("ABS name ", stg.ABS_name) if stg.ABS_name[0] == "Aquascat 1000R": print("hey !") if stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,): print("hey hey !") # print("time cross section ", stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ # stg.frequency_for_inversion[1]]) # print("depth cross section ", stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ # stg.frequency_for_inversion[1]]) # print(stg.frequency_for_inversion[1]) pcm_SSC_sand = self.axis_SSC_sand.pcolormesh( stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]], -stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]], stg.SSC_sand[self.combobox_acoustic_data_choice.currentIndex()], cmap='rainbow', norm=LogNorm(vmin=1e0, vmax=10), shading='gouraud') if stg.depth_bottom[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,): self.axis_SSC_sand.plot(stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]], -stg.depth_bottom[self.combobox_acoustic_data_choice.currentIndex()], color='black', linewidth=1, linestyle="solid") self.pcm_SSC_sand_vertical_line, = self.axis_SSC_sand.plot( stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1], self.slider_sand.value() - 1] * np.ones(stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[ 1]].shape), -stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]], linestyle="solid", color='r', linewidth=2) print("o+o+o+o+o+o") print(stg.frequency_for_inversion[1]) print([i for i, _ in stg.sand_sample_position]) # print([stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ # stg.frequency_for_inversion[1], i] # for i, _ in stg.fine_sample_position]) print("o+o+o+o+o+o") # self.pcm_SSC_fine_meas_vs_inv, = self.axis_SSC_fine.plot( # [stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ # stg.frequency_for_inversion[1], i] # for i, _ in stg.fine_sample_position], # [-stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ # stg.frequency_for_inversion[1], j] # for _, j in stg.fine_sample_position], # ls=" ", marker="o", ms=5, mec="k", mfc="k") self.pcm_SSC_sand_meas_vs_inv, = self.axis_SSC_sand.plot(stg.time_sand, stg.depth_sand, ls=" ", marker="o", ms=5, mec="k", mfc="k") print(stg.time_sand) print(stg.depth_sand) print([f for _, f in stg.sample_sand]) for i, j in stg.sample_sand: self.pcm_SSC_sand_meas_vs_inv_text = self.axis_SSC_sand.text( stg.time_sand[j], stg.depth_sand[j], i) else: pcm_SSC_sand = self.axis_SSC_sand.pcolormesh( stg.time[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]], -stg.depth[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]], stg.SSC_sand[self.combobox_acoustic_data_choice.currentIndex()], cmap='rainbow', norm=LogNorm(vmin=1e0, vmax=10), shading='gouraud') if stg.depth_bottom[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,): self.axis_SSC_sand.plot(stg.time[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]], -stg.depth_bottom[self.combobox_acoustic_data_choice.currentIndex()], color='black', linewidth=1, linestyle="solid") self.pcm_SSC_sand_vertical_line, = self.axis_SSC_sand.plot( stg.time[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1], self.slider_sand.value() - 1] * np.ones(stg.depth[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[ 1]].shape), -stg.depth[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]], linestyle="solid", color='r', linewidth=2) # self.pcm_SSC_sand_meas_vs_inv, = self.axis_SSC_sand.plot( # [stg.time[self.combobox_acoustic_data_choice.currentIndex()][ # stg.frequency_for_inversion[1], i] # for i, _ in stg.sand_sample_position], # [-stg.depth[self.combobox_acoustic_data_choice.currentIndex()][ # stg.frequency_for_inversion[1], j] # for _, j in stg.sand_sample_position], # ls=" ", marker="o", ms=5, mec="k", mfc="k") self.pcm_SSC_sand_meas_vs_inv, = self.axis_SSC_sand.plot(stg.time_sand, stg.depth_sand, ls=" ", marker="o", ms=5, mec="k", mfc="k") print(stg.time_sand) print(stg.depth_sand) print([f for _, f in stg.sample_sand]) for i, j in stg.sample_sand: self.pcm_SSC_sand_meas_vs_inv_text = self.axis_SSC_sand.text( stg.time_sand[j], stg.depth_sand[j], i) cbar_SSC_sand = self.figure_SSC_sand.colorbar(pcm_SSC_sand, ax=self.axis_SSC_sand, shrink=1, location='right') cbar_SSC_sand.set_label(label='Fine SSC (g/L', rotation=270, labelpad=15) elif stg.ABS_name[0] == "UB-SediFlow": pcm_SSC_sand = self.axis_SSC_sand.pcolormesh(stg.t[0, :], -stg.r[0, :], stg.SSC_sand, cmap='rainbow', norm=LogNorm(vmin=1e-2, vmax=10), shading='gouraud') self.figure_SSC_sand.supxlabel("Time (sec)", fontsize=10) self.figure_SSC_sand.supylabel("Depth (m)", fontsize=10) self.figure_SSC_sand.canvas.draw_idle() def plot_SSC_sand_vertical_profile(self): if self.combobox_acoustic_data_choice.count() > 0: if stg.SSC_sand[self.combobox_acoustic_data_choice.currentIndex()].shape == (0,): self.verticalLayout_groupbox_plot_vertical_profile_sand.removeWidget(self.toolbar_profile_sand) self.verticalLayout_groupbox_plot_vertical_profile_sand.removeWidget(self.canvas_profile_sand) self.canvas_profile_sand = FigureCanvas() self.toolbar_profile_sand = NavigationToolBar(self.canvas_profile_sand, self) self.verticalLayout_groupbox_plot_vertical_profile_sand.addWidget(self.toolbar_profile_sand) self.verticalLayout_groupbox_plot_vertical_profile_sand.addWidget(self.canvas_profile_sand) if stg.SSC_sand[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,): self.slider_sand.setMaximum(stg.SSC_fine[self.combobox_acoustic_data_choice.currentIndex()].shape[1]) self.verticalLayout_groupbox_plot_vertical_profile_sand.removeWidget(self.toolbar_profile_sand) self.verticalLayout_groupbox_plot_vertical_profile_sand.removeWidget(self.canvas_profile_sand) self.figure_vertical_profile_SSC_sand, self.axis_vertical_profile_SSC_sand = plt.subplots( nrows=1, ncols=1, layout="constrained") self.canvas_profile_sand = FigureCanvas(self.figure_vertical_profile_SSC_sand) self.toolbar_profile_sand = NavigationToolBar(self.canvas_profile_sand, self) self.verticalLayout_groupbox_plot_vertical_profile_sand.addWidget(self.toolbar_profile_sand) self.verticalLayout_groupbox_plot_vertical_profile_sand.addWidget(self.canvas_profile_sand) if stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,): self.plot_sand , = self.axis_vertical_profile_SSC_sand.plot( stg.SSC_sand[self.combobox_acoustic_data_choice.currentIndex()][:, self.slider_sand.value() -1], -stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]], linestyle="solid", linewidth=1, color="k") self.pcm_SSC_sand_vertical_line.set_data( stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1], self.slider_sand.value() - 1] * np.ones(stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]].shape), -stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]]) self.figure_SSC_sand.canvas.draw_idle() self.axis_vertical_profile_SSC_sand.set_ylim( [-np.nanmax(stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]]), -np.nanmin(stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]])]) else: self.plot_sand , = self.axis_vertical_profile_SSC_sand.plot( stg.SSC_sand[self.combobox_acoustic_data_choice.currentIndex()][:, self.slider_sand.value() -1], -stg.depth[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]], linestyle="solid", linewidth=1, color="k") self.pcm_SSC_sand_vertical_line.set_data( stg.time[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1], self.slider_sand.value() - 1] * np.ones(stg.depth[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]].shape), -stg.depth[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]]) self.figure_SSC_sand.canvas.draw_idle() self.axis_vertical_profile_SSC_sand.set_ylim( [-np.nanmax(stg.depth[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]]), -np.nanmin(stg.depth[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]])]) # self.axis_SSC_fine.plot([], [], ) self.axis_vertical_profile_SSC_sand.set_xlabel("Inverted Sand SSC (g/L)") self.axis_vertical_profile_SSC_sand.set_ylabel("Depth (m)") self.figure_vertical_profile_SSC_sand.canvas.draw_idle() def update_plot_SSC_sand_vertical_profile(self): if stg.filename_BS_noise_data != []: if stg.SSC_sand[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,): if stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,): self.plot_sand.set_data( stg.SSC_sand[self.combobox_acoustic_data_choice.currentIndex()][:, self.slider_sand.value() - 1], -stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]]) self.pcm_SSC_sand_vertical_line.set_data( stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1], self.slider_sand.value() - 1] * np.ones(stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]].shape), -stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]]) self.figure_SSC_sand.canvas.draw_idle() self.axis_vertical_profile_SSC_sand.set_ylim( [-np.nanmax(stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]]), -np.nanmin(stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]])]) else: self.plot_sand.set_data( stg.SSC_sand[self.combobox_acoustic_data_choice.currentIndex()][:, self.slider_sand.value() - 1], -stg.depth[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]]) self.pcm_SSC_sand_vertical_line.set_data( stg.time[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1], self.slider_sand.value() - 1] * np.ones(stg.depth[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]].shape), -stg.depth[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]]) self.figure_SSC_sand.canvas.draw_idle() self.axis_vertical_profile_SSC_sand.set_ylim( [-np.nanmax(stg.depth[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]]), -np.nanmin(stg.depth[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]])]) self.axis_vertical_profile_SSC_sand.set_xlabel("Inverted Sand SSC (g/L)") self.axis_vertical_profile_SSC_sand.set_ylabel("Depth (m)") self.figure_vertical_profile_SSC_sand.canvas.draw_idle() def slider_profile_number_to_begin_sand(self): self.slider_sand.setValue(int(self.slider_sand.minimum())) self.lineEdit_slider_sand.setText(str(self.slider_sand.value())) def slider_profile_number_to_right_sand(self): self.slider_sand.setValue(int(self.slider_sand.value()) + 1) self.lineEdit_slider_sand.setText(str(self.slider_sand.value())) def slider_profile_number_to_left_sand(self): self.slider_sand.setValue(int(self.slider_sand.value()) - 1) self.lineEdit_slider_sand.setText(str(self.slider_sand.value())) def slider_profile_number_to_end_sand(self): self.slider_sand.setValue(int(self.slider_sand.maximum())) self.lineEdit_slider_sand.setText(str(self.slider_sand.value())) def profile_number_on_lineEdit_sand(self): self.slider_sand.setValue(int(self.lineEdit_slider_sand.text())) def update_lineEdit_by_moving_slider_sand(self): self.lineEdit_slider_sand.setText(str(self.slider_sand.value())) # --- Plot sand SSC : measured vs inverted --- def fill_combobox_sand_sample(self): print("stg.sample_sand ", stg.sample_sand) self.combobox_sand_sample_choice.addItems([f for f, _ in stg.sample_sand]) # --- Get position (index, value) of sample in acoustic measurement space --- if ((stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,)) and (stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,))): print(stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]]) print(stg.depth_fine) for j in range(len(stg.time_sand)): (stg.sand_sample_position. append( ( np.where( np.abs(stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]] - stg.time_sand[j]) == np.nanmin(np.abs(stg.time_cross_section[ self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]] - stg.time_sand[j])) )[0][0], np.where( np.abs(stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]] - (-stg.depth_sand[j])) == np.nanmin(np.abs(stg.depth_cross_section[ self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]] - (-stg.depth_sand[j]))) )[0][0] ) ) ) print("0 stg.sand_sample_position ", stg.sand_sample_position) elif ((stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,)) and (stg.depth[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,))): for j in range(len(stg.time_sand)): (stg.sand_sample_position. append( ( np.where( np.abs(stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]] - stg.time_sand[j]) == np.nanmin(np.abs(stg.time_cross_section[ self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]] - stg.time_sand[j])) )[0][0], np.where( np.abs(stg.depth[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]] - (-stg.depth_sand[j])) == np.nanmin(np.abs(stg.depth[ self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]] - (-stg.depth_sand[j]))) )[0][0] ) ) ) print("1 stg.sand_sample_position ", stg.sand_sample_position) elif ((stg.time[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,)) and (stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,))): for j in range(len(stg.time_sand)): (stg.sand_sample_position. append( ( np.where( np.abs(stg.time[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]] - stg.time_sand[j]) == np.nanmin(np.abs(stg.time[ self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]] - stg.time_sand[j])) )[0][0], np.where( np.abs(stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]] - (-stg.depth_sand[j])) == np.nanmin(np.abs(stg.depth_cross_section[ self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]] - (-stg.depth_sand[j]))) )[0][0] ) ) ) print("2 stg.sand_sample_position ", stg.sand_sample_position) elif ((stg.time[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,)) and (stg.depth[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,))): for j in range(len(stg.time_sand)): (stg.sand_sample_position. append( ( np.where( np.abs(stg.time[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]] - stg.time_sand[j]) == np.nanmin(np.abs(stg.time[ self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]] - stg.time_sand[j])) )[0][0], np.where( np.abs(stg.depth[self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]] - (-stg.depth_sand[j])) == np.nanmin(np.abs(stg.depth[ self.combobox_acoustic_data_choice.currentIndex()][ stg.frequency_for_inversion[1]] - (-stg.depth_sand[j]))) )[0][0] ) ) ) print("3 stg.sand_sample_position ", stg.sand_sample_position) def plot_measured_vs_inverted_SSC_sand(self): if self.combobox_acoustic_data_choice.count() > 0: if stg.SSC_sand[self.combobox_acoustic_data_choice.currentIndex()].shape == (0,): self.verticalLayout_groupbox_plot_measured_vs_inverted_SSC_sand.removeWidget( self.toolbar_inverted_vs_measured_SSC_sand) self.verticalLayout_groupbox_plot_measured_vs_inverted_SSC_sand.removeWidget( self.canvas_inverted_vs_measured_SSC_sand) self.canvas_inverted_vs_measured_SSC_sand = FigureCanvas() self.toolbar_inverted_vs_measured_SSC_sand = NavigationToolBar( self.canvas_inverted_vs_measured_SSC_sand, self) self.verticalLayout_groupbox_plot_measured_vs_inverted_SSC_sand.addWidget( self.toolbar_inverted_vs_measured_SSC_sand) self.verticalLayout_groupbox_plot_measured_vs_inverted_SSC_sand.addWidget( self.canvas_inverted_vs_measured_SSC_sand) else: self.verticalLayout_groupbox_plot_measured_vs_inverted_SSC_sand.removeWidget( self.toolbar_inverted_vs_measured_SSC_sand) self.verticalLayout_groupbox_plot_measured_vs_inverted_SSC_sand.removeWidget( self.canvas_inverted_vs_measured_SSC_sand) self.figure_measured_vs_inverted_sand, self.axis_measured_vs_inverted_sand = ( plt.subplots(nrows=1, ncols=1, layout="constrained")) self.canvas_inverted_vs_measured_SSC_sand = FigureCanvas(self.figure_measured_vs_inverted_sand) self.toolbar_inverted_vs_measured_SSC_sand = NavigationToolBar(self.canvas_inverted_vs_measured_SSC_sand, self) self.verticalLayout_groupbox_plot_measured_vs_inverted_SSC_sand.addWidget( self.toolbar_inverted_vs_measured_SSC_sand) self.verticalLayout_groupbox_plot_measured_vs_inverted_SSC_sand.addWidget( self.canvas_inverted_vs_measured_SSC_sand) print("self.combobox_sand_sample_choice.currentData() ", self.combobox_sand_sample_choice.currentData()) print("self.combobox_sand_sample_choice.currentIndex() ", self.combobox_sand_sample_choice.currentIndex()) print("///////////////////////////////////////////////////") self.sand_sample_to_plot = [int(f[1:]) - 1 for f in self.combobox_sand_sample_choice.currentData()] print("self.sand_sample_to_plot ", self.sand_sample_to_plot) # for k in self.fine_sample_to_plot: # print("stg.Ctot_fine[k] ", stg.Ctot_fine[k]) # print(stg.fine_sample_position[k][1]) # print(stg.fine_sample_position[k][0]) # print(stg.SSC_fine[self.combobox_acoustic_data_choice.currentIndex()][ # stg.fine_sample_position[k][1], # stg.fine_sample_position[k][0]]) if self.sand_sample_to_plot: self.axis_measured_vs_inverted_sand.plot( [stg.Ctot_sand[k] for k in self.sand_sample_to_plot], [stg.SSC_sand[self.combobox_acoustic_data_choice.currentIndex()][ stg.sand_sample_position[k][1], stg.sand_sample_position[k][0]] for k in self.sand_sample_to_plot], ls=" ", marker='o', ms=5, mec='black', mfc="black" ) self.axis_measured_vs_inverted_sand.plot( [0, np.nanmax([np.nanmax([stg.Ctot_sand[c] for c in self.sand_sample_to_plot]), np.nanmax([stg.SSC_sand[self.combobox_acoustic_data_choice.currentIndex()][ stg.sand_sample_position[i][1], stg.sand_sample_position[i][0]] for i in self.sand_sample_to_plot])]) + 1], [0, np.nanmax([np.nanmax([stg.Ctot_sand[c] for c in self.sand_sample_to_plot]), np.nanmax([stg.SSC_sand[self.combobox_acoustic_data_choice.currentIndex()][ stg.sand_sample_position[i][1], stg.sand_sample_position[i][0]] for i in self.sand_sample_to_plot])]) + 1], ls="solid", linewidth=1, color="k" ) # --- Display sample label on plot --- for i in self.sand_sample_to_plot: self.axis_measured_vs_inverted_sand.text( stg.Ctot_sand[i], stg.SSC_sand[self.combobox_acoustic_data_choice.currentIndex()][ stg.sand_sample_position[i][1], stg.sand_sample_position[i][0]], stg.sample_sand[i][0], fontstyle="normal", fontweight="light", fontsize=10) else: self.axis_measured_vs_inverted_sand.plot( [stg.Ctot_sand[k] for k in range(len(stg.sample_sand))], [stg.SSC_sand[self.combobox_acoustic_data_choice.currentIndex()][ stg.sand_sample_position[k][1], stg.sand_sample_position[k][0]] for k in range(len(stg.sample_sand))], ls=" ", marker='o', ms=5, mec='black', mfc="black" ) self.axis_measured_vs_inverted_sand.plot( [0, np.nanmax([np.nanmax([stg.Ctot_sand[c] for c in range(len(stg.sample_sand))]), np.nanmax([stg.SSC_sand[self.combobox_acoustic_data_choice.currentIndex()][ stg.sand_sample_position[i][1], stg.sand_sample_position[i][0]] for i in range(len(stg.sample_sand))])]) + 1], [0, np.nanmax([np.nanmax([stg.Ctot_sand[c] for c in range(len(stg.sample_sand))]), np.nanmax([stg.SSC_sand[self.combobox_acoustic_data_choice.currentIndex()][ stg.sand_sample_position[i][1], stg.sand_sample_position[i][0]] for i in range(len(stg.sample_sand))])]) + 1], ls="solid", linewidth=1, color="k" ) for j in range(len(stg.sample_sand)): self.axis_measured_vs_inverted_sand.text( stg.Ctot_sand[j], stg.SSC_sand[self.combobox_acoustic_data_choice.currentIndex()][ stg.sand_sample_position[j][1], stg.sand_sample_position[j][0]], stg.sample_sand[j][0], fontstyle="normal", fontweight="light", fontsize=10) self.axis_measured_vs_inverted_sand.set_xlabel("Measured SSC sand (g/L)") self.axis_measured_vs_inverted_sand.set_ylabel("Inverted SSC sand (g/L)") self.figure_measured_vs_inverted_sand.canvas.draw_idle() # -------------------------------------------------------------------------------------------------------------- # ______ _______ # | | | | \ # | | | | \ # | | | | | # | | | | / # |______| |________ |________/ # COMMENT OLD CODE LINE FROM HERE ... # ### --- Layout of groupbox in the Top horizontal layout box # # # Acoustic inversion Options | Acoustic inversion method Settings parameter # # self.groupbox_acoustic_inversion_options = QGroupBox() # self.horizontalLayoutTop.addWidget(self.groupbox_acoustic_inversion_options, 3) # # self.groupbox_acoustic_inversion_settings_parameter = QGroupBox() # self.horizontalLayoutTop.addWidget(self.groupbox_acoustic_inversion_settings_parameter, 7) # # ### --- Layout of groupbox in the Bottom horizontal layout box # # # Plot SSC 2D field | Plot SSC graph sample vs inversion # # self.groupbox_SSC_2D_field = QGroupBox() # self.horizontalLayoutBottom.addWidget(self.groupbox_SSC_2D_field, 6) # # self.groupbox_SSC_profiles_or_measured_vs_inverted = QGroupBox() # self.horizontalLayoutBottom.addWidget(self.groupbox_SSC_profiles_or_measured_vs_inverted, 4) # # # ===================================================== # # TOP HORIZONTAL BOX LAYOUT # # ===================================================== # # # +++++++++++++++++++++++++++++++++++++++++++++++ # # | Group box Acoustic inversion options | # # +++++++++++++++++++++++++++++++++++++++++++++++ # # self.gridLayout_groupbox_acoustic_inversion_options = QGridLayout(self.groupbox_acoustic_inversion_options) # # self.groupbox_acoustic_inversion_options.setTitle("Acoustic inversion option") # # self.label_acoustic_inversion_method_choice = QLabel() # self.gridLayout_groupbox_acoustic_inversion_options.addWidget( # self.label_acoustic_inversion_method_choice, 0, 0, 1, 1) # self.label_acoustic_inversion_method_choice.setText("Acoustic inversion method : ") # # self.combobox_acoustic_inversion_method_choice = QComboBox() # self.gridLayout_groupbox_acoustic_inversion_options.addWidget( # self.combobox_acoustic_inversion_method_choice, 0, 1, 1, 1) # self.combobox_acoustic_inversion_method_choice.addItems([" ", "Acoustic inversion method 1"]) # self.combobox_acoustic_inversion_method_choice.currentIndexChanged.connect( # self.acoustic_inversion_method_choice) # # self.combobox_acoustic_inversion_method_choice.currentIndexChanged.connect(self.test) # # self.groupbox_calibration_samples = QGroupBox() # self.groupbox_calibration_samples.setTitle("Sample choice for calibration") # self.gridLayout_groupbox_acoustic_inversion_options.addWidget(self.groupbox_calibration_samples, 1, 0, 1, 2) # # self.gridLayout_groupbox_calibration_samples = QGridLayout(self.groupbox_calibration_samples) # # self.label_frequency = QLabel() # self.label_frequency.setText("Frequency :") # self.gridLayout_groupbox_calibration_samples.addWidget(self.label_frequency, 0, 0, 1, 1) # # self.combobox_frequency = QComboBox() # self.gridLayout_groupbox_calibration_samples.addWidget(self.combobox_frequency, 0, 1, 1, 1) # self.combobox_frequency.currentIndexChanged.connect(self.update_plot_transect_with_sample_position) # # self.label_sand_sample_choice = QLabel() # self.label_sand_sample_choice.setText("Sand sediments :") # self.gridLayout_groupbox_calibration_samples.addWidget(self.label_sand_sample_choice, 0, 2, 1, 1) # # self.combobox_calibration_sand_sample = CheckableComboBox() # self.gridLayout_groupbox_calibration_samples.addWidget(self.combobox_calibration_sand_sample, 0, 3, 1, 1) # # self.combobox_calibration_sand_sample.currentData.connect(self.update_plot_transect_with_sample_position) # self.combobox_calibration_sand_sample.currentIndexChanged.connect( # self.update_plot_transect_with_sample_position) # # self.combobox_calibration_sand_sample.currentIndexChanged.connect(self.sample_choice) # # self.label_fine_sample_choice = QLabel() # self.label_fine_sample_choice.setText("Fine sediments :") # self.gridLayout_groupbox_calibration_samples.addWidget(self.label_fine_sample_choice, 0, 4, 1, 1) # # self.combobox_calibration_fine_sample = CheckableComboBox() # self.gridLayout_groupbox_calibration_samples.addWidget(self.combobox_calibration_fine_sample, 0, 5, 1, 1) # # self.combobox_calibration_fine_sample.currentData.connect(self.update_plot_transect_with_sample_position) # self.combobox_calibration_fine_sample.currentIndexChanged.connect( # self.update_plot_transect_with_sample_position) # # # self.combobox_calibration_fine_sample.currentIndexChanged.connect(self.sample_choice) # # self.groupbox_plot_sample_position_on_transect = QGroupBox() # self.gridLayout_groupbox_calibration_samples.addWidget(self.groupbox_plot_sample_position_on_transect, 1, 0, 1, 6) # self.verticalLayout_groupbox_plot_sample_position_on_transect = QVBoxLayout(self.groupbox_plot_sample_position_on_transect) # # self.canvas_plot_sample_position_on_transect = None # # self.verticalLayout_groupbox_plot_sample_position_on_transect.addWidget(self.canvas_plot_sample_position_on_transect) # # # # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # # | Group box Acoustic inversion method settings parameter | # # +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ # # self.gridLayout_groupbox_acoustic_inversion_settings_parameter \ # = QGridLayout(self.groupbox_acoustic_inversion_settings_parameter) # # self.groupbox_acoustic_inversion_settings_parameter.setTitle("Acoustic inversion method settings parameter") # # self.groupbox_parameter = QGroupBox() # self.gridLayout_groupbox_acoustic_inversion_settings_parameter.addWidget(self.groupbox_parameter, 0, 0, 1, 2) # # self.gridLayout_groupbox_parameter = QGridLayout(self.groupbox_parameter) # # # self.label_temperature = QLabel() # # self.label_temperature.setText("Temperature : ") # # # self.gridLayout_groupbox_acoustic_inversion_settings_parameter.addWidget(self.label_temperature, 0, 0, 1, 1) # # self.gridLayout_groupbox_parameter.addWidget(self.label_temperature, 0, 0, 1, 1) # # self.spinbox_temperature = QDoubleSpinBox() # # # self.gridLayout_groupbox_acoustic_inversion_settings_parameter.addWidget(self.spinbox_temperature, 0, 1, 1, 1) # # self.gridLayout_groupbox_parameter.addWidget(self.spinbox_temperature, 0, 1, 1, 1) # # self.spinbox_temperature.valueChanged.connect(self.temperature_value) # # self.label_frequencies_pairs_to_compute_VBI = QLabel() # self.label_frequencies_pairs_to_compute_VBI.setText("Frequencies for VBI") # self.gridLayout_groupbox_parameter.addWidget( # self.label_frequencies_pairs_to_compute_VBI, 0, 1, 1, 1) # # # self.combobox_frequencies_VBI = QComboBox() # # self.gridLayout_groupbox_acoustic_inversion_settings_parameter.addWidget( # # self.combobox_frequencies_VBI, 1, 1, 1, 1) # # self.combobox_frequencies_VBI.currentIndexChanged.connect(self.frequencies_pair_choice_to_compute_VBI) # # self.label_ks = QLabel() # self.label_ks.setText("ks") # self.gridLayout_groupbox_parameter.addWidget(self.label_ks, 0, 2, 1, 1) # # self.label_sv = QLabel() # self.label_sv.setText("sv") # self.gridLayout_groupbox_parameter.addWidget(self.label_sv, 0, 3, 1, 1) # # self.label_X = QLabel() # self.label_X.setText("X") # self.gridLayout_groupbox_parameter.addWidget(self.label_X, 0, 4, 1, 1) # # self.label_alphas = QLabel() # self.label_alphas.setText("\u03B1s") # self.gridLayout_groupbox_parameter.addWidget(self.label_alphas, 0, 5, 1, 1) # # self.label_zeta = QLabel() # self.label_zeta.setText("\u03B6") # self.gridLayout_groupbox_parameter.addWidget(self.label_zeta, 0, 6, 1, 1) # # self.label_freq1 = QLabel() # self.label_freq1.setText("Frequency 1 : ") # self.gridLayout_groupbox_parameter.addWidget(self.label_freq1, 1, 0, 1, 1) # # self.label_freq2 = QLabel() # self.label_freq2.setText("Frequency 2 : ") # self.gridLayout_groupbox_parameter.addWidget(self.label_freq2, 2, 0, 1, 1) # # self.combobox_freq1 = QComboBox() # self.gridLayout_groupbox_parameter.addWidget(self.combobox_freq1, 1, 1, 1, 1) # # self.combobox_freq2 = QComboBox() # self.gridLayout_groupbox_parameter.addWidget(self.combobox_freq2, 2, 1, 1, 1) # # self.spinbox_ks_freq1 = QDoubleSpinBox() # self.spinbox_ks_freq1.setDecimals(5) # self.gridLayout_groupbox_parameter.addWidget(self.spinbox_ks_freq1, 1, 2, 1, 1) # # self.spinbox_ks_freq2 = QDoubleSpinBox() # self.spinbox_ks_freq2.setDecimals(5) # self.gridLayout_groupbox_parameter.addWidget(self.spinbox_ks_freq2, 2, 2, 1, 1) # # self.spinbox_sv_freq1 = QDoubleSpinBox() # self.spinbox_sv_freq1.setDecimals(5) # self.gridLayout_groupbox_parameter.addWidget(self.spinbox_sv_freq1, 1, 3, 1, 1) # # self.spinbox_sv_freq2 = QDoubleSpinBox() # self.spinbox_sv_freq2.setDecimals(5) # self.gridLayout_groupbox_parameter.addWidget(self.spinbox_sv_freq2, 2, 3, 1, 1) # # self.spinbox_X = QDoubleSpinBox() # self.spinbox_X.setDecimals(5) # self.gridLayout_groupbox_parameter.addWidget(self.spinbox_X, 1, 4, 1, 1) # # self.spinbox_alphas_freq1 = QDoubleSpinBox() # self.spinbox_alphas_freq1.setDecimals(5) # self.gridLayout_groupbox_parameter.addWidget(self.spinbox_alphas_freq1, 1, 5, 1, 1) # # self.spinbox_alphas_freq2 = QDoubleSpinBox() # self.spinbox_alphas_freq2.setDecimals(5) # self.gridLayout_groupbox_parameter.addWidget(self.spinbox_alphas_freq2, 2, 5, 1, 1) # # self.spinbox_zeta_freq1 = QDoubleSpinBox() # self.spinbox_zeta_freq1.setDecimals(5) # self.gridLayout_groupbox_parameter.addWidget(self.spinbox_zeta_freq1, 1, 6, 1, 1) # # self.spinbox_zeta_freq2 = QDoubleSpinBox() # self.spinbox_zeta_freq2.setDecimals(5) # self.gridLayout_groupbox_parameter.addWidget(self.spinbox_zeta_freq2, 2, 6, 1, 1) # # # self.label_frequency_to_compute_SSC = QLabel() # # self.label_frequency_to_compute_SSC.setText("frequencies for SSC : ") # # # self.gridLayout_groupbox_acoustic_inversion_settings_parameter.addWidget( # # # self.label_frequency_to_compute_SSC, 2, 0, 1, 1) # # self.gridLayout_groupbox_parameter.addWidget(self.label_frequency_to_compute_SSC, 3, 0, 1, 1) # # # self.combobox_frequency_SSC = QComboBox() # # # self.gridLayout_groupbox_acoustic_inversion_settings_parameter.addWidget( # # # self.combobox_frequency_SSC, 2, 1, 1, 1) # # self.gridLayout_groupbox_parameter.addWidget(self.combobox_frequency_SSC, 3, 1, 1, 1) # # self.combobox_frequency_SSC.currentIndexChanged.connect(self.frequency_choice_to_compute_SSC) # # self.pushbutton_run = QPushButton() # self.pushbutton_run.setText("RUN") # self.gridLayout_groupbox_acoustic_inversion_settings_parameter.addWidget(self.pushbutton_run, 1, 0, 1, 1) # self.pushbutton_run.clicked.connect(self.compute_acoustic_inversion_method_high_concentration) # # self.pushbutton_plot = QPushButton() # self.pushbutton_plot.setText("PLOT") # self.gridLayout_groupbox_acoustic_inversion_settings_parameter.addWidget(self.pushbutton_plot, 1, 1, 1, 1) # self.pushbutton_plot.clicked.connect(self.plot_SSC_fine) # self.pushbutton_plot.clicked.connect(self.plot_SSC_sand) # # self.pushbutton_plot.clicked.connect(self.insert_slider_for_vertical_profile_figure_area) # self.pushbutton_plot.clicked.connect(self.plot_inverted_SSC_sand_vertical_profile) # # self.pushbutton_plot.clicked.connect(self.plot_inverted_SSC_vs_measured_SSC) # # self.pushbutton_plot.clicked.connect(self.plot_inverted_SSC_vs_measured_SSC_OR_inverted_SSC_vertical_profile) # # # ===================================================== # # BOTTOM HORIZONTAL BOX LAYOUT # # ===================================================== # # # +++++++++++++++++++++++++++++++++++++++++++++++ # # | Group box SSC 2D field | # # +++++++++++++++++++++++++++++++++++++++++++++++ # # self.verticalLayout_groupbox_SSC_2D_field = QVBoxLayout(self.groupbox_SSC_2D_field) # self.groupbox_SSC_2D_field.setTitle("Suspended Sediment Concentration 2D plot") # # self.groupbox_plot_SSC_sand = QGroupBox() # self.verticalLayout_groupbox_plot_SSC_sand = QVBoxLayout(self.groupbox_plot_SSC_sand) # self.verticalLayout_groupbox_SSC_2D_field.addWidget(self.groupbox_plot_SSC_sand) # # self.figure_SSC_sand, self.axis_SSC_sand = plt.subplots(nrows=1, ncols=1, layout="constrained") # self.canvas_SSC_sand = FigureCanvas(self.figure_SSC_sand) # self.verticalLayout_groupbox_plot_SSC_sand.addWidget(self.canvas_SSC_sand) # # self.groupbox_plot_SSC_fine = QGroupBox() # self.verticalLayout_groupbox_plot_SSC_fine = QVBoxLayout(self.groupbox_plot_SSC_fine) # self.verticalLayout_groupbox_SSC_2D_field.addWidget(self.groupbox_plot_SSC_fine) # # self.figure_SSC_fine, self.axis_SSC_fine = plt.subplots(nrows=1, ncols=1, layout="constrained") # self.canvas_SSC_fine = FigureCanvas(self.figure_SSC_fine) # self.verticalLayout_groupbox_plot_SSC_fine.addWidget(self.canvas_SSC_fine) # # # +++++++++++++++++++++++++++++++++++++++++++++++ # # | Group box plot samples vs inversion | # # +++++++++++++++++++++++++++++++++++++++++++++++ # # self.verticalLayout_groupbox_SSC_profiles_or_measured_vs_inverted = QVBoxLayout(self.groupbox_SSC_profiles_or_measured_vs_inverted) # # self.groupbox_SSC_profiles_or_measured_vs_inverted.setTitle("Suspended Sediment Concentration : sample vs inversion") # # self.horizontalLayout_fig_choice = QHBoxLayout() # self.verticalLayout_groupbox_SSC_profiles_or_measured_vs_inverted.addLayout(self.horizontalLayout_fig_choice) # self.spacerItem_fig_choice = QSpacerItem(50, 10, QSizePolicy.Expanding, QSizePolicy.Minimum) # self.horizontalLayout_fig_choice.addSpacerItem(self.spacerItem_fig_choice) # self.combobox_fig_choice = QComboBox() # self.combobox_fig_choice.addItems([ # "Inverted SSC sand vertical profile", # "Inverted SSC fine vertical profile", # "Inverted SSC vs Measured SSC"]) # self.horizontalLayout_fig_choice.addWidget(self.combobox_fig_choice) # # # self.combobox_fig_choice.currentIndexChanged.connect(self.plot_inverted_SSC_fine_vertical_profile) # # self.combobox_fig_choice.currentIndexChanged.connect(self.plot_inverted_SSC_sand_vertical_profile) # # self.combobox_fig_choice.currentIndexChanged.connect(self.plot_inverted_SSC_vs_measured_SSC) # # # self.combobox_fig_choice.currentIndexChanged.connect(self.plot_inverted_SSC_vs_measured_SSC_OR_inverted_SSC_vertical_profile) # # # --- Figure, axis, canvas for Inverted SSC vs Measured SSC # self.figure_SSC_measured_vs_inverted, self.axis_SSC_measured_vs_inverted = plt.subplots(nrows=1, ncols=1, # layout="constrained") # self.canvas_SSC_measured_vs_inverted = FigureCanvas(self.figure_SSC_measured_vs_inverted) # # self.verticalLayout_groupbox_SSC_profiles_or_measured_vs_inverted.addWidget(self.canvas_SSC_measured_vs_inverted) # # # --- Figure, axis, canvas for SSC sand vertical profile # self.figure_SSC_sand_vertical_profile, self.axis_SSC_sand_vertical_profile = ( # plt.subplots(nrows=1, ncols=1, layout="constrained")) # self.canvas_SSC_sand_vertical_profile = FigureCanvas(self.figure_SSC_sand_vertical_profile) # self.verticalLayout_groupbox_SSC_profiles_or_measured_vs_inverted.addWidget( # self.canvas_SSC_sand_vertical_profile) # # # --- Figure, axis, canvas for SSC fine vertical profile # # self.figure_SSC_fine_vertical_profile, self.axis_SSC_fine_vertical_profile = ( # # plt.subplots(nrows=1, ncols=1, layout="constrained")) # # self.canvas_SSC_fine_vertical_profile = FigureCanvas(self.figure_SSC_fine_vertical_profile) # # self.verticalLayout_groupbox_SSC_profiles_or_measured_vs_inverted.addWidget( # # self.canvas_SSC_fine_vertical_profile) # # # --- Slider for moving the profile --- # self.horizontalLayout_slider = QHBoxLayout() # self.verticalLayout_groupbox_SSC_profiles_or_measured_vs_inverted.addLayout(self.horizontalLayout_slider) # # self.pushbutton_slider_left = QPushButton() # self.pushbutton_slider_left.setIcon(self.icon_triangle_left) # self.horizontalLayout_slider.addWidget(self.pushbutton_slider_left) # # self.pushbutton_slider_left.clicked.connect(self.slide_profile_number_to_left) # # self.pushbutton_slider_right = QPushButton() # self.pushbutton_slider_right.setIcon(self.icon_triangle_right) # self.horizontalLayout_slider.addWidget(self.pushbutton_slider_right) # # self.pushbutton_slider_right.clicked.connect(self.slide_profile_number_to_right) # # self.lineEdit_slider = QLineEdit() # self.lineEdit_slider.setText("1") # self.lineEdit_slider.setFixedWidth(50) # self.horizontalLayout_slider.addWidget(self.lineEdit_slider) # # self.lineEdit_slider.returnPressed.connect(self.profile_number_on_lineEdit) # # self.slider = QSlider() # self.horizontalLayout_slider.addWidget(self.slider, 9) # # self.slider.setOrientation(Qt.Horizontal) # self.slider.setCursor(Qt.OpenHandCursor) # self.slider.setMinimum(1) # self.slider.setMaximum(10) # self.slider.setTickInterval(1) # self.slider.setValue(1) # # self.slider.valueChanged.connect(self.update_lineEdit_by_moving_slider) # self.slider.valueChanged.connect(self.plot_inverted_SSC_sand_vertical_profile) # self.slider.valueChanged.connect(self.plot_SSC_sand) # # # self.verticalLayout_groupbox_sediment_concentration_2Dplot = QVBoxLayout(self.groupbox_sediment_concentration_2Dplot) # # # # self.figure_SSC_2Dplot, self.axis_SSC_2Dplot = plt.subplots(nrows=2, ncols=1) # # self.canvas_sediments2DPlot = FigureCanvas(self.figure_SSC_2Dplot) # # self.toolbar_concentration_2Dplot = NavigationToolBar(self.canvas_sediments2DPlot, self) # # self.plot_SSC_fine() # # self.plot_SSC_sand() # # # self.verticalLayout_groupbox_sediment_concentration_2Dplot.addWidget(self.toolbar_concentration_2Dplot) # # self.verticalLayout_groupbox_sediment_concentration_2Dplot.addWidget(self.canvas_sediments2DPlot) # # # # # self.horizontalLayout_Bottom_acousticInversionTab.addWidget(self.canvas_sediments2DPlot) # # self.horizontalLayout_Bottom_acousticInversionTab.addWidget(self.groupbox_sediment_concentration_2Dplot, 7) # # # # # # # self.groupbox_sediment_concentration_sample_vs_measurement.setTitle( # # # "Suspended sediment concentration plot : acoustic inversion theory VS measurements") # # # # self.verticalLayout_groupbox_sediment_concentration_sample_vs_measurement = QVBoxLayout( # # self.groupbox_sediment_concentration_sample_vs_measurement) # # # # self.figure_inverseSSC_vs_measuredSSC, self.axis_inverseSSC_vs_measuredSSC = plt.subplots(nrows=1, ncols=1) # # self.canvas_InverseSSC_vs_MeasuredSSC = FigureCanvas(self.figure_inverseSSC_vs_measuredSSC) # # self.toolbar_InverseSSC_vs_MeasuredSSC = NavigationToolBar(self.canvas_InverseSSC_vs_MeasuredSSC, self) # # # self.verticalLayout_groupbox_sediment_concentration_sample_vs_measurement.addWidget( # # # self.toolbar_InverseSSC_vs_MeasuredSSC) # # self.verticalLayout_groupbox_sediment_concentration_sample_vs_measurement.addWidget( # # self.canvas_InverseSSC_vs_MeasuredSSC, 3) # # # self.horizontalLayout_Bottom_acousticInversionTab.addWidget(self.canvas_InverseSSC_vs_MeasuredSSC) # # # # self.horizontalLayout_Bottom_acousticInversionTab.addWidget( # # self.groupbox_sediment_concentration_sample_vs_measurement) # # # # self.verticalLayout_acoustic_inversion_tab.addLayout(self.horizontalLayout_Bottom_acousticInversionTab, 6) # # # # self.retranslate_acoustic_inversion_tab() # # # ---------------------------------------------------------------------------------------------------------------- # # -------------------- Functions -------------------- # # # def retranslate_acoustic_inversion_tab(self): # # # # self.groupbox_AcousticInversionOption.setTitle(_translate("CONSTANT_STRING", cs.ACOUSTIC_INVERSION_OPTIONS)) # # self.groupbox_sediment_concentration_2Dplot.setTitle(_translate("CONSTANT_STRING", cs.FINE_AND_SAND_SEDIMENTS_CONCENTRATION_2D_FIELD)) # # self.groupbox_sediment_concentration_sample_vs_measurement.setTitle(_translate("CONSTANT_STRING", cs.SUSPENDED_SEDIMENT_CONCENTRATION_PLOT)) # def acoustic_inversion_method_choice(self): # print("acoustic_inversion_method_choice") # if self.combobox_acoustic_inversion_method_choice.currentIndex() == 1: # # self.plot_transect_with_sample_position() # # # --- add items in combobox of samples (sand and vertical fine) to calibrate acoustic inversion method --- # # # samples_vertical_line = np.split(stg.samples, np.where(np.diff(stg.sample_time) != 0)[0]+1) # # # self.combobox_calibration_sand_sample.addItem(" ") # # for s in samples_vertical_line: # # self.combobox_calibration_sand_sample.addItem(" - ".join([i for i in s])) # # self.combobox_frequency.addItems(stg.freq_text) # # self.combobox_calibration_sand_sample.addItems(stg.samples) # # self.combobox_calibration_sand_sample.currentData.connect(self.update_plot_transect_with_sample_position) # # self.combobox_calibration_fine_sample.addItems(stg.samples) # # self.combobox_calibration_fine_sample.currentData.connect(self.update_plot_transect_with_sample_position) # # self.combobox_freq1.addItems(stg.freq_text) # self.combobox_freq2.addItems(stg.freq_text) # # # # for i in range(len(samples_vertical_line)): # # self.combobox_calibration_samples.setItemChecked(i, False) # # # --- add items in combobox of frequencies for VBI computation --- # # self.combobox_frequencies_VBI.addItem(" ") # # for k in combinations(stg.freq_text, 2): # # self.combobox_frequencies_VBI.addItem(k[0] + " - " + k[1]) # # print(k) # # for i in range(len(list(combinations(stg.freq_text, 2)))): # # self.combobox_frequencies_VBI.setItemChecked(i, False) # # # print(f"stg.fine_sediment_columns length : {len(stg.fine_sediment_columns)}") # # print(f"stg.fine_sediment_columns : {stg.fine_sediment_columns}") # # print(f"stg.frac_vol_fine.shape : {stg.frac_vol_fine.shape}") # # print(f"stg.frac_vol_fine : {stg.frac_vol_fine}") # # def plot_transect_with_sample_position(self): # print("plot_transect_with_sample_position") # if self.canvas_plot_sample_position_on_transect == None: # # self.verticalLayout_groupbox_plot_sample_position_on_transect.removeWidget(self.canvas_plot_sample_position_on_transect) # self.figure_plot_sample_position_on_transect, self.axis_plot_sample_position_on_transect = \ # plt.subplots(nrows=1, ncols=1, layout="constrained") # self.canvas_plot_sample_position_on_transect = FigureCanvas(self.figure_plot_sample_position_on_transect) # self.verticalLayout_groupbox_plot_sample_position_on_transect.addWidget(self.canvas_plot_sample_position_on_transect) # # if stg.BS_stream_bed.size == 0: # # val_min = np.nanmin(stg.BS_cross_section[stg.freq_bottom_detection, :, :]) # val_max = np.nanmax(stg.BS_cross_section[stg.freq_bottom_detection, :, :]) # if val_min == 0: # val_min = 1e-5 # # self.axis_plot_sample_position_on_transect.pcolormesh( # stg.t[stg.freq_bottom_detection, :], # -stg.r[stg.freq_bottom_detection, :], # stg.BS_cross_section[stg.freq_bottom_detection, :, :], # cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max)) # # if stg.r_bottom.size != 0: # self.axis_plot_sample_position_on_transect.plot( # stg.t[stg.freq_bottom_detection, :], # -stg.r_bottom, color='black', linewidth=1, linestyle="solid") # # else: # # val_min = np.nanmin(stg.BS_stream_bed[stg.freq_bottom_detection, :, :]) # val_max = np.nanmax(stg.BS_stream_bed[stg.freq_bottom_detection, :, :]) # if val_min == 0: # val_min = 1e-5 # # self.axis_plot_sample_position_on_transect.pcolormesh( # stg.t[stg.freq_bottom_detection, :], # -stg.r[stg.freq_bottom_detection, :], # stg.BS_stream_bed[stg.freq_bottom_detection, :, :], # cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max)) # # if stg.r_bottom.size != 0: # self.axis_plot_sample_position_on_transect.plot( # stg.t[stg.freq_bottom_detection, :], -stg.r_bottom, # color='black', linewidth=1, linestyle="solid") # # self.axis_plot_sample_position_on_transect.set_xticks([]) # self.axis_plot_sample_position_on_transect.set_yticks([]) # self.figure_plot_sample_position_on_transect.canvas.draw_idle() # # def update_plot_transect_with_sample_position(self): # # # --- List selected sand and fine samples --- # sand_position_list, fine_position_list = self.sample_choice() # # # --- Create canvas of Matplotlib figure --- # if stg.BS_raw_data.size == 0: # # self.verticalLayout_groupbox_plot_sample_position_on_transect.removeWidget( # self.canvas_plot_sample_position_on_transect) # self.figure_plot_sample_position_on_transect, self.axis_plot_sample_position_on_transect = \ # plt.subplots(nrows=1, ncols=1, layout="constrained") # self.canvas_plot_sample_position_on_transect = FigureCanvas(self.figure_plot_sample_position_on_transect) # self.verticalLayout_groupbox_plot_sample_position_on_transect.addWidget( # self.canvas_plot_sample_position_on_transect) # # if sand_position_list: # self.axis_plot_sample_position_on_transect.scatter(stg.sample_time[sand_position_list], # stg.sample_depth[sand_position_list], # marker="o", s=20) # # if fine_position_list: # self.axis_plot_sample_position_on_transect.scatter(stg.sample_time[fine_position_list], # stg.sample_depth[fine_position_list], # marker="o", s=14) # # self.axis_plot_sample_position_on_transect.set_xticks([]) # self.axis_plot_sample_position_on_transect.set_yticks([]) # self.figure_plot_sample_position_on_transect.canvas.draw_idle() # # elif stg.BS_stream_bed.size == 0: # # val_min = np.nanmin(stg.BS_cross_section[stg.freq_bottom_detection, :, :]) # val_max = np.nanmax(stg.BS_cross_section[stg.freq_bottom_detection, :, :]) # if val_min == 0: # val_min = 1e-5 # # self.axis_plot_sample_position_on_transect.pcolormesh( # stg.t[stg.freq_bottom_detection, :], -stg.r[stg.freq_bottom_detection, :], # stg.BS_cross_section[self.combobox_frequency.currentIndex(), :, :], # cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max)) # # if stg.r_bottom.size != 0: # self.axis_plot_sample_position_on_transect.plot( # stg.t[stg.freq_bottom_detection, :], -stg.r_bottom, # color='black', linewidth=1, linestyle="solid") # # if sand_position_list: # self.axis_plot_sample_position_on_transect.scatter(stg.sample_time[sand_position_list], # stg.sample_depth[sand_position_list], # marker="o", s=20) # # markeredgecolor='k', markerfacecolor='none') # # if fine_position_list: # self.axis_plot_sample_position_on_transect.scatter(stg.sample_time[fine_position_list], # stg.sample_depth[fine_position_list], # marker="o", s=14) # # markeredgecolor='k', markerfacecolor='k') # # self.axis_plot_sample_position_on_transect.set_xticks([]) # self.axis_plot_sample_position_on_transect.set_yticks([]) # self.figure_plot_sample_position_on_transect.canvas.draw_idle() # # else: # # val_min = np.nanmin(stg.BS_stream_bed[stg.freq_bottom_detection, :, :]) # val_max = np.nanmax(stg.BS_stream_bed[stg.freq_bottom_detection, :, :]) # if val_min == 0: # val_min = 1e-5 # # self.axis_plot_sample_position_on_transect.pcolormesh( # stg.t[stg.freq_bottom_detection, :], -stg.r[stg.freq_bottom_detection, :], # stg.BS_stream_bed[self.combobox_frequency.currentIndex(), :, :], # cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max)) # # if stg.r_bottom.size != 0: # self.axis_plot_sample_position_on_transect.plot( # stg.t[stg.freq_bottom_detection, :], -stg.r_bottom, color='black', linewidth=1, linestyle="solid") # # if sand_position_list: # self.axis_plot_sample_position_on_transect.scatter(stg.sample_time[sand_position_list], # stg.sample_depth[sand_position_list], # marker="o", s=20) # # if fine_position_list: # self.axis_plot_sample_position_on_transect.scatter(stg.sample_time[fine_position_list], # stg.sample_depth[fine_position_list], # marker="o", s=14) # # self.axis_plot_sample_position_on_transect.set_xticks([]) # self.axis_plot_sample_position_on_transect.set_yticks([]) # self.figure_plot_sample_position_on_transect.canvas.draw_idle() # # def sample_choice(self): # # --- List selected sand samples --- # sand_position_list = [int(s[1:])-1 for s in self.combobox_calibration_sand_sample.currentData()] # print(f"sand_position_list : {sand_position_list}") # # print(f"sand samples checked : {sand_samples_checked}") # # # --- List selected fine samples --- # fine_position_list = [int(s[1:])-1 for s in self.combobox_calibration_fine_sample.currentData()] # print(f"fine_position_list : {fine_position_list}") # # print(f"fine samples checked : {fine_samples_checked}") # return sand_position_list, fine_position_list # # def frequencies_pair_choice_to_compute_VBI(self): # freq_combination = list(combinations(stg.freq, 2)) # frequencies_position = [] # # for i in range(self.combobox_frequencies_VBI.count()): # # if self.combobox_frequencies_VBI.itemChecked(i): # # frequencies_position.append(i) # # elif (i in frequencies_position) and (not self.combobox_frequencies_VBI.itemChecked(i)): # # frequencies_position.remove(i) # frequencies_position.append(self.combobox_frequencies_VBI.currentIndex()) # print(f"frequencies_position : {frequencies_position}") # # if len(frequencies_position) != 0: # # print(frequencies_position) # # print(freq_combination[frequencies_position[0]][0], freq_combination[frequencies_position[0]][1]) # stg.frequencies_to_compute_VBI = ( # np.array([[int(np.where(stg.freq == freq_combination[frequencies_position[0]-1][0])[0][0]), # freq_combination[frequencies_position[0]-1][0]], # [int(np.where(stg.freq == freq_combination[frequencies_position[0]-1][1])[0][0]), # freq_combination[frequencies_position[0]-1][1]]])) # print(f"stg.frequencies_to_compute_VBI : {stg.frequencies_to_compute_VBI}") # # # --- add items in combobox of frequency for SSC computation --- # # for k in range(stg.frequencies_to_compute_VBI.shape[0]+1): # # self.combobox_frequency_SSC.removeItem(k) # self.combobox_frequency_SSC.clear() # for k in range(stg.frequencies_to_compute_VBI.shape[0]+1): # if k == 0: # self.combobox_frequency_SSC.addItem(" ") # else: # self.combobox_frequency_SSC.addItem(str(1e-6*stg.frequencies_to_compute_VBI[k-1, 1]) + " MHz") # # for i in range(stg.frequencies_to_compute_VBI.shape[0]): # # self.combobox_frequency_SSC.setItemChecked(i, False) # # print("frequencies to compute VBI", stg.frequencies_to_compute_VBI) # # def frequency_choice_to_compute_SSC(self): # print(self.combobox_frequency_SSC.currentText()) # print(self.combobox_frequency_SSC.currentIndex()) # # print(self.combobox_frequency_SSC.itemChecked(index)) # # # # if self.combobox_frequency_SSC.itemChecked(index): # # # itemChecked(index)): # currentIndex() == 0) or (self.combobox_frequency_SSC.currentIndex() == 1): # # print(self.combobox_frequency_SSC.currentText()) # # print(stg.freq_text) # # print(np.where(np.array(stg.freq_text) == self.combobox_frequency_SSC.currentText())) # # # stg.frequency_to_compute_SSC \ # # = np.array([int(np.where(np.array(stg.freq_text) == self.combobox_frequency_SSC.currentText())[0][0]), # # stg.freq[int(np.where(np.array(stg.freq_text) == self.combobox_frequency_SSC.currentText())[0][0])]]) # # # # print("stg.frequency_to_compute_SSC ", stg.frequency_to_compute_SSC) # # # def temperature_value(self): # # stg.temperature = self.spinbox_temperature.value() # # print(stg.temperature) # # def compute_sound_velocity(self): # stg.water_velocity = self.inv_hc.water_velocity(stg.temperature) # print("water velocity ", stg.water_velocity) # # # def compute_kt(self, freq_ind): # # # # # stg.kt_corrected = self.inv_hc.kt_corrected(stg.r[int(stg.frequency_to_compute_SSC[0]), :], stg.water_velocity, # # # stg.gain_rx[[int(stg.frequencies_to_compute_VBI[0, 0]), int(stg.frequencies_to_compute_VBI[1, 0])]], # # # stg.gain_tx[[int(stg.frequencies_to_compute_VBI[0, 0]), int(stg.frequencies_to_compute_VBI[1, 0])]], # # # stg.kt[[int(stg.frequencies_to_compute_VBI[0, 0]), int(stg.frequencies_to_compute_VBI[1, 0])]]) # # # # if stg.ABS_name == "Aquascat 1000R": # # kt_corrected = self.inv_hc.kt_corrected(stg.r[0, :], stg.water_velocity, # # stg.gain_rx[freq_ind], stg.gain_tx[freq_ind], stg.kt[0, freq_ind]) # # kt_corrected_2D = np.repeat(kt_corrected, stg.r.shape[1], axis=0) # # print("kt 2D ", kt_corrected_2D) # # print("kt 2D shape ", kt_corrected_2D.shape) # # kt_corrected_3D = np.zeros((kt_corrected_2D.shape[1], kt_corrected_2D.shape[0], stg.t.shape[1])) # # for k in range(kt_corrected_2D.shape[1]): # # kt_corrected_3D[k, :, :] = np.repeat(kt_corrected_2D, stg.t.shape[1], axis=1)[:, # # k * stg.t.shape[1]:(k + 1) * stg.t.shape[1]] # # print("kt 3D ", kt_corrected_3D) # # print("kt 3D shape ", kt_corrected_3D.shape) # # elif stg.ABS_name == "UB-SediFlow": # # stg.kt_corrected = np.array([[0.003, 0.006]]) # # print("kt ", stg.kt_corrected) # # print("kt shape ", stg.kt_corrected.shape) # # stg.kt_corrected_2D = np.array(np.repeat(stg.kt_corrected, stg.r.shape[1], axis=0)) # # print("kt 2D shape ", stg.kt_corrected_2D.shape) # # stg.kt_corrected_3D = np.zeros((stg.kt_corrected_2D.shape[1], stg.kt_corrected_2D.shape[0], stg.t.shape[1])) # # for k in range(stg.kt_corrected_2D.shape[1]): # # stg.kt_corrected_3D[k, :, :] = np.repeat(stg.kt_corrected_2D, stg.t.shape[1], axis=1)[:, # # k * stg.t.shape[1]:(k + 1) * stg.t.shape[1]] # # print("kt corrected 3D zeros shape ", stg.kt_corrected_3D.shape) # # # # print("kt ", stg.kt_corrected) # # # print("kt shape ", stg.kt_corrected.shape) # # # # # stg.kt_corrected_2D = np.repeat(stg.kt_corrected, stg.r.shape[1], axis=0) # # # # # stg.kt_corrected_3D = np.zeros((stg.kt_corrected_2D.shape[1], stg.kt_corrected_2D.shape[0], stg.t.shape[1])) # # # print("stg.t.shape ", stg.t.shape) # # # print("kt corrected 3D zeros shape ", stg.kt_corrected_3D.shape) # # # for k in range(stg.kt_corrected_2D.shape[1]): # # # stg.kt_corrected_3D[k, :, :] = np.repeat(stg.kt_corrected_2D, stg.t.shape[1], axis=1)[:, k*stg.t.shape[1]:(k+1)*stg.t.shape[1]] # # # # # print("kt 2D", np.repeat(stg.kt_corrected[:, :, np.newaxis], stg.t.shape[0], axis=2)) # # def compute_J(self, freq_ind, kt): # if stg.ABS_name == "Aquascat 1000R": # print(f"stg.BS_stream_bed.shape : {stg.BS_stream_bed.shape}") # # if stg.BS_stream_bed.size != 0: # # if stg.BS_stream_bed_pre_process_SNR.size != 0: # print("1/ stg.BS_stream_bed_pre_process_SNR") # stg.J_cross_section = ( # self.inv_hc.j_cross_section( # stg.BS_stream_bed_pre_process_SNR[freq_ind, :, :], # stg.r_2D[freq_ind, :, :stg.BS_stream_bed_pre_process_SNR.shape[2]], # kt[freq_ind, :, :])) # # elif stg.BS_stream_bed_pre_process_average.size != 0: # print("2/ stg.BS_stream_bed_pre_process_average") # stg.J_cross_section = ( # self.inv_hc.j_cross_section( # stg.BS_stream_bed_pre_process_average[freq_ind, :, :], # stg.r_2D[freq_ind, :, :stg.BS_stream_bed_pre_process_average.shape[2]], # kt[freq_ind, :, :])) # # else: # print("3/ stg.BS_stream_bed") # stg.J_cross_section = ( # self.inv_hc.j_cross_section( # stg.BS_stream_bed[freq_ind, :, :], # stg.r_2D[freq_ind, :, :stg.BS_stream_bed.shape[2]], # kt[freq_ind, :, :])) # # elif stg.BS_cross_section.size != 0: # # if stg.BS_cross_section_pre_process_SNR.size != 0: # print("1/ stg.BS_cross_section_pre_process_SNR") # stg.J_cross_section = ( # self.inv_hc.j_cross_section( # stg.BS_cross_section_pre_process_SNR[freq_ind, :, :], # stg.r_2D[freq_ind, :, :stg.BS_cross_section_pre_process_SNR.shape[2]], # kt[freq_ind, :, :])) # # elif stg.BS_cross_section_pre_process_average.size != 0: # print("2/ stg.BS_cross_section_pre_process_average") # stg.J_cross_section = ( # self.inv_hc.j_cross_section(stg.BS_cross_section_pre_process_average[freq_ind, :, :], # stg.r_2D[0, :, :stg.BS_cross_section_pre_process_average.shape[2]], # kt[freq_ind, :, :])) # # else: # print("3/ stg.BS_cross_section") # stg.J_cross_section = ( # self.inv_hc.j_cross_section( # stg.BS_cross_section[freq_ind, :, :], # stg.r_2D[freq_ind, :, :stg.BS_cross_section.shape[2]], # kt[freq_ind, :, :])) # # elif stg.ABS_name == "UB-SediFlow": # # if stg.BS_stream_bed.size != 0: # # if stg.BS_stream_bed_pre_process_SNR.size != 0: # print("1/ stg.BS_stream_bed_pre_process_SNR") # stg.J_cross_section = ( # self.inv_hc.j_cross_section( # stg.BS_stream_bed_pre_process_SNR[freq_ind, :, :], # stg.r_2D[freq_ind, :, :stg.BS_stream_bed_pre_process_SNR.shape[2]], # kt[freq_ind, :, :])) # # elif stg.BS_stream_bed_pre_process_average.size != 0: # print("2/ stg.BS_stream_bed_pre_process_average") # stg.J_cross_section = ( # self.inv_hc.j_cross_section( # stg.BS_stream_bed_pre_process_average[freq_ind, :, :], # stg.r_2D[freq_ind, :, :stg.BS_stream_bed_pre_process_average.shape[2]], # kt[freq_ind, :, :])) # # # # else: # print("3/ stg.BS_stream_bed") # stg.J_cross_section = ( # self.inv_hc.j_cross_section( # stg.BS_stream_bed[freq_ind, :, :], # stg.r_2D[freq_ind, :, :stg.BS_stream_bed.shape[2]], # kt[freq_ind, :, :])) # # elif stg.BS_cross_section.size != 0: # # if stg.BS_cross_section_pre_process_SNR.size != 0: # print("2/ stg.BS_cross_section_pre_process_SNR") # stg.J_cross_section = ( # self.inv_hc.j_cross_section( # stg.BS_cross_section_pre_process_SNR[freq_ind, :, :], # stg.r_2D[freq_ind, :, :stg.BS_cross_section_pre_process_SNR.shape[2]], # kt[freq_ind, :, :])) # # if stg.BS_cross_section_pre_process_average.size != 0: # print("1/ stg.BS_cross_section_pre_process_average") # stg.J_cross_section = ( # self.inv_hc.j_cross_section(stg.BS_cross_section_pre_process_average[freq_ind, :, :], # stg.r_2D[freq_ind, :, # :stg.BS_cross_section_pre_process_average.shape[2]], # kt[freq_ind, :, :])) # # # # else: # print("3/ stg.BS_cross_section") # stg.J_cross_section = ( # self.inv_hc.j_cross_section( # stg.BS_cross_section[freq_ind, :, :], # stg.r_2D[freq_ind, :, :stg.BS_cross_section.shape[2]], # kt[freq_ind, :, :])) # # # # # stg.J_cross_section = ( # # self.inv_hc.j_cross_section( # # stg.BS_cross_section_pre_process_average[ # # [int(stg.frequencies_to_compute_VBI[0, 0]), int(stg.frequencies_to_compute_VBI[1, 0])], # # :, :], # # stg.r_2D[int(stg.frequency_to_compute_SSC[0]), :, :stg.BS_cross_section_pre_process_average.shape[2]], # # stg.kt_corrected_3D)) # # # stg.J_cross_section = ( # # self.inv_hc.j_cross_section( # # stg.BS_cross_section_pre_process_SNR[ # # [int(stg.frequencies_to_compute_VBI[0, 0]), int(stg.frequencies_to_compute_VBI[1, 0])], # # :, :], # # stg.r_2D[int(stg.frequency_to_compute_SSC[0]), :, # # :stg.BS_cross_section_pre_process_SNR.shape[2]], # # stg.kt_corrected_3D)) # # # stg.J_cross_section = ( # # self.inv_hc.j_cross_section( # # stg.BS_cross_section[ # # [int(stg.frequencies_to_compute_VBI[0, 0]), int(stg.frequencies_to_compute_VBI[1, 0])], # # :, :], # # stg.r_2D[int(stg.frequency_to_compute_SSC[0]), :, # # :stg.BS_cross_section.shape[2]], # # stg.kt_corrected_3D)) # # # stg.J_stream_bed = ( # # self.inv_hc.j_cross_section( # # stg.BS_stream_bed_pre_process_average[ # # [int(stg.frequencies_to_compute_VBI[0, 0]), int(stg.frequencies_to_compute_VBI[1, 0])], # # :, :], # # stg.r_2D[int(stg.frequency_to_compute_SSC[0]), :, :stg.BS_stream_bed_pre_process_average.shape[2]], # # stg.kt_corrected_3D)) # # # # stg.J_stream_bed = ( # # self.inv_hc.j_cross_section( # # stg.BS_stream_bed_pre_process_SNR[ # # [int(stg.frequencies_to_compute_VBI[0, 0]), int(stg.frequencies_to_compute_VBI[1, 0])], # # :, :], # # stg.r_2D[int(stg.frequency_to_compute_SSC[0]), :, :stg.BS_stream_bed_pre_process_SNR.shape[2]], # # stg.kt_corrected_3D)) # # # stg.J_stream_bed = ( # # self.inv_hc.j_cross_section( # # stg.BS_stream_bed[ # # [int(stg.frequencies_to_compute_VBI[0, 0]), int(stg.frequencies_to_compute_VBI[1, 0])], # # :, :], # # stg.r_2D[int(stg.frequency_to_compute_SSC[0]), :, # # :stg.BS_stream_bed.shape[2]], # # stg.kt_corrected_3D)) # # # elif (stg.BS_data_section_averaged.size == 0) and (stg.BS_data_section_SNR_filter.size == 0): # # stg.J_cross_section = ( # # self.inv_hc.j_cross_section( # # stg.BS_data_section[[int(stg.frequencies_to_compute_VBI[0, 0]), # # int(stg.frequencies_to_compute_VBI[1, 0])], :, :], # # stg.r_2D[int(stg.frequency_to_compute_SSC[0]), :, :stg.BS_data_section.shape[2]], stg.kt_corrected_3D)) # # elif (stg.BS_data_section_averaged.size != 0) and (stg.BS_data_section_SNR_filter.size == 0): # # print("Je suis dans ce J") # # stg.J_cross_section = ( # # self.inv_hc.j_cross_section( # # stg.BS_data_section_averaged[[0, 2], :, :], # # stg.r_2D[[0, 2], :, :stg.BS_data_section_averaged.shape[2]], # # stg.kt_corrected_3D[[0, 1], :, :])) # # stg.J_cross_section = ( # # self.inv_hc.j_cross_section( # # stg.BS_data_section_averaged[[int(stg.frequencies_to_compute_VBI[0, 0]), # # int(stg.frequencies_to_compute_VBI[1, 0])], :, :], # # stg.r_2D[int(stg.frequency_to_compute_SSC[0]), :, :stg.BS_data_section_averaged.shape[2]], stg.kt_corrected_3D)) # # else: # # print("stg.r_2D.shape ", stg.r_2D.shape) # # print("stg.kt_corrected_3D.shape ", stg.kt_corrected_3D.shape) # # stg.J_cross_section = ( # # self.inv_hc.j_cross_section( # # stg.BS_data_section_SNR_filter[[int(stg.frequencies_to_compute_VBI[0, 0]), # # int(stg.frequencies_to_compute_VBI[1, 0])], :, :], # # stg.r_2D[int(stg.frequency_to_compute_SSC[0]), :, :stg.BS_data_section_SNR_filter.shape[2]], stg.kt_corrected_3D)) # # # # print("J ", stg.J_cross_section) # # print("J sahpe ", stg.J_cross_section.shape) # # # if stg.BS_data_section.size == 0: # # stg.J_cross_section = ( # # self.inv_hc.j_cross_section( # # stg.BS_data[ # # [int(stg.frequencies_to_compute_VBI[0, 0]), int(stg.frequencies_to_compute_VBI[1, 0])], # # :, :], stg.r_2D[int(stg.frequency_to_compute_SSC[0]), :, :stg.BS_data.shape[2]], # # stg.kt_corrected_3D)) # # elif (stg.BS_data_section_averaged.size == 0) and (stg.BS_data_section_SNR_filter.size == 0): # # stg.J_cross_section = ( # # self.inv_hc.j_cross_section( # # stg.BS_data_section[[int(stg.frequencies_to_compute_VBI[0, 0]), # # int(stg.frequencies_to_compute_VBI[1, 0])], :, :], # # np.array([stg.r_2D[0, :, :stg.BS_data_section.shape[2]]]), # # stg.kt_corrected_3D)) # # elif (stg.BS_data_section_averaged.size != 0) and (stg.BS_data_section_SNR_filter.size == 0): # # print("Je suis dans ce J") # # stg.J_cross_section = ( # # self.inv_hc.j_cross_section( # # stg.BS_data_section_averaged[[0, 2], :, :], # # stg.r_2D[[0, 2], :, :stg.BS_data_section_averaged.shape[2]], # # stg.kt_corrected_3D[[0, 1], :, :])) # # # stg.J_cross_section = ( # # # self.inv_hc.j_cross_section( # # # stg.BS_data_section_averaged[[int(stg.frequencies_to_compute_VBI[0, 0]), # # # int(stg.frequencies_to_compute_VBI[1, 0])], :, :], # # # stg.r_2D[int(stg.frequency_to_compute_SSC[0]), :, :stg.BS_data_section_averaged.shape[2]], stg.kt_corrected_3D)) # # else: # # print("stg.r_2D.shape ", stg.r_2D.shape) # # print("stg.kt_corrected_3D.shape ", stg.kt_corrected_3D.shape) # # stg.J_cross_section = ( # # self.inv_hc.j_cross_section( # # stg.BS_data_section_SNR_filter[[int(stg.frequencies_to_compute_VBI[0, 0]), # # int(stg.frequencies_to_compute_VBI[1, 0])], :, :], # # stg.r_2D[int(stg.frequency_to_compute_SSC[0]), :, :stg.BS_data_section_SNR_filter.shape[2]], # # stg.kt_corrected_3D)) # # # # print("J ", stg.J_cross_section) # # print("J sahpe ", stg.J_cross_section.shape) # # return stg.J_cross_section # # # def compute_alpha_s(self, freq, freq_ind): # # stg.sv = self.compute_sv(freq) # # j_cross_section = self.compute_J(freq_ind) # # stg.alpha_s = np.log(stg.sv / j_cross_section) / (4 * stg.sample_depth[10]) - stg.water_attenuation # # return # # # def compute_zeta(self): # # stg.zeta_freq1 = self.inv_hc.zeta(0, 2) # # stg.zeta_freq2 = self.inv_hc.zeta() # # # stg.zeta = self.inv_hc.zeta(int(stg.frequencies_to_compute_VBI[0, 0]), int(stg.frequencies_to_compute_VBI[1, 0])) # # print("zeta ", stg.zeta) # # # def compute_X(self): # # stg.X_exponent = self.inv_hc.X_exponent(2) #self.inv_hc.X_exponent(self.combobox_frequencies_VBI.currentIndex()) # # print("X ", stg.X_exponent) # # # def compute_VBI(self): # # stg.VBI_cross_section = self.inv_hc.VBI_cross_section(3e5, # # 1e6, # # stg.zeta[0], # # # zeta is already limited to the frequencies pairs so that we just need to select indices 0 and 1 # # stg.zeta[1], # # stg.J_cross_section[0, :, :], # # stg.J_cross_section[1, :, :], # # stg.r_2D[0, :, :stg.t.shape[1]], # # stg.water_attenuation[0], # # stg.water_attenuation[1], # # stg.X_exponent) # # # stg.VBI_cross_section = self.inv_hc.VBI_cross_section(stg.frequencies_to_compute_VBI[0, 1], stg.frequencies_to_compute_VBI[1, 1], # # stg.zeta[0], # zeta is already limited to the frequencies pairs so that we just need to select indices 0 and 1 # # stg.zeta[1], # # stg.J_cross_section[0, :, :], # # stg.J_cross_section[1, :, :], # # stg.r_2D[int(stg.frequency_to_compute_SSC[0]), :, :stg.t.shape[1]], # # stg.water_attenuation[0], # # stg.water_attenuation[1], # # stg.X_exponent) # # print("VBI shape ", stg.VBI_cross_section.shape) # # print(int(self.combobox_frequency_SSC.currentIndex())) # # print(stg.zeta[int(self.combobox_frequency_SSC.currentIndex())]) # # def range_cells_function(self): # """ Computing the real cell size, that depends on the temperature """ # # defaut Aquascat cell size # aquascat_cell_size = stg.r[0, 1] - stg.r[0, 0] # # Pulse duration # tau = aquascat_cell_size * 2 / 1500 # figure 2.9 1500 vitesse du son entrée pour le paramètrage des mesures aquascat # # Sound speed # cel = self.inv_hc.water_velocity(self.spinbox_temperature.value()) # # Real cell size # real_cell_size = cel * tau / 2 # voir fig 2.9 # # # Converting to real cell profile # real_r = np.zeros((stg.freq.shape[0], stg.r.shape[1])) # for i in range(stg.freq.shape[0]): # real_r[i, :] = stg.r[i, :] / aquascat_cell_size * real_cell_size # (/ aquascat_cell_size) pour ramener BS.r entre 0 et 1 # # (* real_cell_size) pour remettre les échelles spatiales sur la taille réelle des cellules # # # R with right shape (numpy array) # R_real = real_r # np.repeat(real_r, len(stg.freq), axis=1) # print(f"R_real = {R_real.shape}") # # return R_real # # def compute_acoustic_inversion_method_high_concentration(self): # # # --- List selected sand and fine samples --- # sand_position_list, fine_position_list = self.sample_choice() # # if stg.ABS_name == "Aquascat 1000R": # # freq1 = int(self.combobox_freq1.currentIndex()) # 0 = 300kHz et 1 = 500kHz # freq2 = int(self.combobox_freq2.currentIndex()) # 2 = 1MHz # print(f"freq1 = {freq1}, freq2 = {freq2}") # # stg.water_velocity = self.inv_hc.water_velocity(stg.temperature) # # alpha_w_freq1, alpha_w_freq2 = (self.inv_hc.water_attenuation(freq=stg.freq[freq1], T=stg.temperature), # self.inv_hc.water_attenuation(freq=stg.freq[freq2], T=stg.temperature)) # print(f"alpha_w_freq1 = {alpha_w_freq1}, alpha_w_freq2 = {alpha_w_freq2}") # # self.compute_sound_velocity() # # # print("ks value : ", self.inv_hc.ks(a_s=stg.sand_sediment_columns[5:], rho_s=2500, freq=stg.freq[0], pdf=stg.frac_vol_sand[2, :])) # # # ks_freq1, ks_freq2 = ( # # self.inv_hc.ks(num_sample=2, freq=stg.freq[freq1], pdf=stg.frac_vol_sand_cumul[2, :]), # # self.inv_hc.ks(num_sample=2, freq=stg.freq[freq2], pdf=stg.frac_vol_sand_cumul[2, :])) # ks_freq1, ks_freq2 = ( # self.inv_hc.ks(num_sample=sand_position_list[0], freq=stg.freq[freq1], pdf=stg.frac_vol_sand_cumul[sand_position_list[0], :]), # self.inv_hc.ks(num_sample=sand_position_list[0], freq=stg.freq[freq2], pdf=stg.frac_vol_sand_cumul[sand_position_list[0], :])) # # 6 = V11 , 10 = V12 sur le notebook d'Adrien # # ks_freq1, ks_freq2 = self.inv_hc.ks()[0], self.inv_hc.ks()[2] # print(f"ks_freq1 = {ks_freq1}, ks_freq2 = {ks_freq2}") # # # f = self.inv_hc.form_factor_function_MoateThorne2012(np.log(np.logspace(-10, -2, 3000)), stg.freq[2]) # # fig, ax = plt.subplots(nrows=1, ncols=1) # # ax.plot(list(range(len(np.log(np.logspace(-10, -2, 3000))))), f, color="k", ls="solid") # # plt.show() # # # sv_freq1, sv_freq2 = ( # # self.inv_hc.sv(ks=ks_freq1, M_sand=stg.Ctot_sand[2]), # # self.inv_hc.sv(ks=ks_freq2, M_sand=stg.Ctot_sand[2])) # sv_freq1, sv_freq2 = ( # self.inv_hc.sv(ks=ks_freq1, M_sand=stg.Ctot_sand[sand_position_list[0]]), # self.inv_hc.sv(ks=ks_freq2, M_sand=stg.Ctot_sand[sand_position_list[0]])) # print(f"sv_freq1 = {sv_freq1}, sv_freq2 = {sv_freq2}") # # X_exponent = self.inv_hc.X_exponent(freq1=stg.freq[freq1], freq2=stg.freq[freq2], sv_freq1=sv_freq1, sv_freq2=sv_freq2) # # X_exponent = self.inv_hc.X_exponent(ind=2) # print(f"X_exponent = {X_exponent}") # # stg.kt = np.array([[0.04], [0.01838], [0.03267], [0.01376]]) # kt = np.array([]) # for i, v in enumerate(stg.kt): # kt = np.append(kt, self.inv_hc.kt_corrected(r=stg.r[i, :], # water_velocity=stg.water_velocity, # RxGain=stg.gain_rx[i], # TxGain=stg.gain_tx[i], # kt_ref=stg.kt[i])) # kt = np.reshape(kt, (len(kt), 1)) # print(f"kt = {kt}") # kt2D = np.repeat(np.array(kt), stg.r.shape[1], axis=1) # print(f"kt2D.shape = {kt2D.shape}") # # print(f"kt2D = {kt2D}") # kt3D = np.repeat(kt2D[:, :, np.newaxis], stg.t.shape[1], axis=2) # print(f"kt3D.shape = {kt3D.shape}") # # print(f"kt3D = {kt3D}") # # # kt_freq1, kt_freq2 = ( # # self.inv_hc.kt_corrected(r=stg.r[0, :], water_velocity=stg.water_velocity, RxGain=stg.gain_rx[0], # # TxGain=stg.gain_tx[0], kt_ref=stg.kt[0]), # # self.inv_hc.kt_corrected(r=stg.r[2, :], water_velocity=stg.water_velocity, RxGain=stg.gain_rx[2], # # TxGain=stg.gain_tx[2], kt_ref=stg.kt[2])) # # print(f"kt_freq1 = {kt_freq1}, kt_freq2 = {kt_freq2}") # # kt2D_freq1 = np.full((stg.r.shape[1], stg.t.shape[1]), kt_freq1) # # kt2D_freq2 = np.full((stg.r.shape[1], stg.t.shape[1]), kt_freq2) # # print(f"kt2D_freq1 = {kt2D_freq1.shape}") # # print(f"kt2D_freq2 = {kt2D_freq2.shape}") # # kt3D = np.repeat(kt2D[:, :, np.newaxis], stg.t.shape[1], axis=2) # # print(f"kt_3D = {kt3D.shape}") # # print(f"kt_3D = {kt3D}") # # # kt_freq1, kt_freq2 = ( # # np.full((stg.r.shape[1], stg.t.shape[1]), stg.kt[0]), # # np.full((stg.r.shape[1], stg.t.shape[1]), stg.kt[2])) # # print(f"kt_freq1 = {kt_freq1.shape}, kt_freq2 = {kt_freq2.shape}") # # J_freq1, J_freq2 = self.compute_J(freq_ind=freq1, kt=kt3D), self.compute_J(freq_ind=freq2, kt=kt3D) # print(f"J_freq1 = {J_freq1.shape}, J_freq2 = {J_freq2.shape}") # # # fig, ax = plt.subplots(nrows=1, ncols=1) # # pcm = ax.pcolormesh(stg.t[0, :], stg.r[0, :], J_freq2, cmap='rainbow', shading='gouraud') # # fig.colorbar(pcm, ax=ax, shrink=1, location='right') # # plt.show() # # # print("***************************") # # print(sv_freq1.shape) # # print(J_freq1.shape) # # print(np.repeat(stg.r[0, :][:, np.newaxis], stg.t.shape[1], axis=1).shape) # # print(np.full((stg.r.shape[1], stg.t.shape[1]), alpha_w_freq1).shape) # # print("***************************") # # r_sample_ind = [] # t_sample_ind = [] # for i in range(len(stg.sample_depth[fine_position_list])): #:3 # # for i in range(len(stg.sample_depth[:3])): #:3 # # print(-stg.sample_depth[i]) # # print(-stg.sample_time[i]) # r_sample_ind.append(np.where(np.abs(stg.r[0, :] - (-stg.sample_depth[i])) == # np.nanmin(np.abs(stg.r[0, :] - (-stg.sample_depth[i]))))) # # print(np.abs(stg.t[0, :] - (-stg.sample_time[i]))) # t_sample_ind.append(np.where(np.abs(stg.t[0, :] - (stg.sample_time[i])) == # np.nanmin(np.abs(stg.t[0, :] - (stg.sample_time[i]))))) # print(f"r_sample_ind = {r_sample_ind}") # print(f"t_sample_ind = {t_sample_ind}") # # print("J_freq1[r_sample_ind[1][0], t_sample_ind[1][0]] ", J_freq1[r_sample_ind[1][0], t_sample_ind[1][0]]) # # # ind_r_min = int(ind_X_min_around_sample[p, k]) # # print(f"ind_r_min = {ind_r_min}") # # ind_r_max = int(ind_X_max_around_sample[p, k]) # # print(f"ind_r_max = {ind_r_max}") # # ind_t_min = int(ind_r_min_around_sample[p, k]) # # print(f"ind_t_min = {ind_t_min}") # # ind_t_max = int(ind_r_max_around_sample[p, k]) # # print(f"ind_t_max = {ind_t_max}") # # # print(f"stg.BS freq1 = {stg.BS_stream_bed_pre_process_average[freq1, r_sample_ind[-1], t_sample_ind[-1]]}") # # print(f"stg.BS freq2 = {stg.BS_stream_bed_pre_process_average[freq2, r_sample_ind[-1], t_sample_ind[-1]]}") # # # # print(f"J_freq1[r_sample_ind[-1], t_sample_ind[-1]] {J_freq1[r_sample_ind[-1], t_sample_ind[-1]]}") # # print(f"J_freq2[r_sample_ind[-1], t_sample_ind[-1]] {J_freq2[r_sample_ind[-1], t_sample_ind[-1]]}") # # # # print(f"stg.r[0, r_sample_ind[-1]] {stg.r[2, r_sample_ind[-1]]}") # # # alpha_s_freq1, alpha_s_freq2 = ( # self.inv_hc.alpha_s(sv=sv_freq1, j_cross_section=J_freq1[r_sample_ind[-1], t_sample_ind[-1]], depth=stg.r[freq1, r_sample_ind[-1]], alpha_w=alpha_w_freq1), # self.inv_hc.alpha_s(sv=sv_freq2, j_cross_section=J_freq2[r_sample_ind[-1], t_sample_ind[-1]], depth=stg.r[freq2, r_sample_ind[-1]], alpha_w=alpha_w_freq2)) # print(f"alpha_s_freq1 = {alpha_s_freq1}, alpha_s_freq2 = {alpha_s_freq2}") # # # range_lin_interp, M_profile_fine = self.inv_hc.M_profile_SCC_fine_interpolated( # # sample_depth=-stg.sample_depth[:3], #:3 # # M_profile=stg.Ctot_fine[:3], #:3 # # range_cells=stg.r[0, :], # # r_bottom=stg.r_bottom[t_sample_ind[0][0]]) # range_lin_interp, M_profile_fine = self.inv_hc.M_profile_SCC_fine_interpolated(sample_depth=-stg.sample_depth[fine_position_list], #:3 # M_profile=stg.Ctot_fine[fine_position_list], #:3 # range_cells=stg.r[0, :], # r_bottom=[stg.r_bottom[t_sample_ind[0][0]] if stg.r_bottom.size != 0 else stg.r_bottom]) # print(f"range_lin_interp : {range_lin_interp}") # print(f"M_profile_fine : {M_profile_fine}") # # M_profile_fine = M_profile_fine[:len(range_lin_interp)] # print(f"M_profile_fine : {M_profile_fine}") # # # # print("----------------------") # # print(f"r_sample_ind[-1][0] = {r_sample_ind[-1][0][0]}") # # print(f"M_profile_fine[:r_sample_ind[-1][0]] = ", M_profile_fine[:r_sample_ind[-1][0][0]]) # # print(f"stg.r[0, r_sample_ind[-1][0]] = ", stg.r[0, r_sample_ind[-1][0][0]]) # # print("----------------------") # # zeta_freq1, zeta_freq2 = (self.inv_hc.zeta(alpha_s=alpha_s_freq1, r=stg.r[freq1, :], M_profile_fine=M_profile_fine), # self.inv_hc.zeta(alpha_s=alpha_s_freq2, r=stg.r[freq2, :], M_profile_fine=M_profile_fine)) # # zeta_freq1, zeta_freq2 = ( # # self.inv_hc.zeta(r=stg.r[0, :r_sample_ind[-1][0][0]], M_profile_fine=M_profile_fine[:r_sample_ind[-1][0][0]]), # # self.inv_hc.zeta(r=stg.r[0, :r_sample_ind[-1][0][0]], M_profile_fine=M_profile_fine[:r_sample_ind[-1][0][0]])) # print(f"zeta_freq1 = {zeta_freq1}, zeta_freq2 = {zeta_freq2}") # # plt.figure() # # plt.plot(stg.r[0, :], Mprofile, 'b.', -stg.sample_depth[:3], stg.Ctot_fine[:3], 'ko') # # plt.show() # # # --- Fill spinboxes with values of parameters --- # self.spinbox_ks_freq1.setValue(ks_freq1) # self.spinbox_ks_freq2.setValue(ks_freq2) # self.spinbox_sv_freq1.setValue(sv_freq1) # self.spinbox_sv_freq2.setValue(sv_freq2) # self.spinbox_X.setValue(X_exponent) # self.spinbox_alphas_freq1.setValue(alpha_s_freq1) # self.spinbox_alphas_freq2.setValue(alpha_s_freq2) # self.spinbox_zeta_freq1.setValue(zeta_freq1) # self.spinbox_zeta_freq2.setValue(zeta_freq2) # # # fig, ax = plt.subplots(nrows=2, ncols=1) # # pcm1 = ax[0].pcolormesh(stg.t[0, :], -stg.r[0, :], J_freq1, # # cmap='rainbow', vmin=0, vmax=1e-5, shading='gouraud') # # cbar1 = fig.colorbar(pcm1, ax=ax[0], shrink=1, location='right') # # cbar1.set_label(label='J (/m', rotation=270, labelpad=15) # # pcm2 = ax[1].pcolormesh(stg.t[0, :], -stg.r[0, :], J_freq2, # # cmap='rainbow', vmin=0, vmax=1e-4, shading='gouraud') # # cbar2 = fig.colorbar(pcm2, ax=ax[1], shrink=1, location='right') # # cbar2.set_label(label='J (/m', rotation=270, labelpad=15) # # fig.supxlabel("Time (sec)", fontsize=10) # # fig.supylabel("Depth (m)", fontsize=10) # # plt.show() # # stg.VBI_cross_section = self.inv_hc.VBI_cross_section(stg.freq[freq1], stg.freq[freq2], # zeta_freq1, zeta_freq2, # J_freq1, J_freq2, # stg.r_2D[freq1, :, :stg.t.shape[1]], # alpha_w_freq1, alpha_w_freq2, # X_exponent) # # stg.SSC_fine = self.inv_hc.SSC_fine(zeta_freq2, stg.r_2D[freq2, :, :stg.t.shape[1]], # stg.VBI_cross_section, stg.freq[freq2], X_exponent, J_freq2, # np.full(shape=(stg.r.shape[1], stg.t.shape[1]), fill_value=alpha_w_freq2)) # # stg.SSC_sand = self.inv_hc.SSC_sand(stg.VBI_cross_section, stg.freq[freq2], X_exponent, ks_freq2) # # elif stg.ABS_name == "UB-SediFlow": # # freq1 = int(self.combobox_freq1.currentIndex()) # 0 = 500kHz # freq2 = int(self.combobox_freq2.currentIndex()) # 1 = 1MHz # # stg.water_velocity = self.inv_hc.water_velocity(stg.temperature) # # alpha_w_freq1, alpha_w_freq2 = (self.inv_hc.water_attenuation(freq=stg.freq[freq1], T=stg.temperature), # self.inv_hc.water_attenuation(freq=stg.freq[freq2], T=stg.temperature)) # print(f"alpha_w_freq1 = {alpha_w_freq1}, alpha_w_freq2 = {alpha_w_freq2}") # # self.compute_sound_velocity() # # # ks_freq1, ks_freq2 = 0.11373812635175432, 0.35705575378038723 # # ks_freq1, ks_freq2 = (self.inv_hc.form_factor_function_MoateThorne2012(a=100e-6, freq=stg.freq[freq1])/np.sqrt(2500*100e-6), # # self.inv_hc.form_factor_function_MoateThorne2012(a=100e-6, freq=stg.freq[freq2])/np.sqrt(2500*100e-6)) # # ks_freq1, ks_freq2 = ( # self.inv_hc.ks(num_sample=sand_position_list[0], freq=stg.freq[freq1], pdf=stg.frac_vol_sand_cumul[sand_position_list[0], :]), # self.inv_hc.ks(num_sample=sand_position_list[0], freq=stg.freq[freq2], pdf=stg.frac_vol_sand_cumul[sand_position_list[0], :])) # # ks_freq1 = 0.05261498026985425 # # ks_freq2 = 0.19303997854869764 # print(f"ks_freq1 = {ks_freq1}, ks_freq2 = {ks_freq2}") # # # Fine sediments 19/05/2021 15h11 - 15h42 (locale) = 13h10 - 13h42 (UTC) --> 6 samples # # 52 to 428 / fixed at 234 # # 14h10 = position 766 # # Sand sediments 20/05/2021 12h04 - 12h20 (locale) = 10h04 - 10h20 (UTC) --> 2 samples # # 777 to 972 / fixed at 777 # # sv_freq1, sv_freq2 = ( # self.inv_hc.sv(ks=ks_freq1, M_sand=stg.Ctot_sand[sand_position_list[0]]), # self.inv_hc.sv(ks=ks_freq2, M_sand=stg.Ctot_sand[sand_position_list[0]])) # # sv_freq1 = 0.0004956686799986783 # # sv_freq2 = 0.006672171109602389 # print(f"sv_freq1 = {sv_freq1}, sv_freq2 = {sv_freq2}") # # X_exponent = self.inv_hc.X_exponent(freq1=stg.freq[freq1], freq2=stg.freq[freq2], # sv_freq1=sv_freq1, sv_freq2=sv_freq2) # # X_exponent = 3.750708280862506 # print(f"X_exponent = {X_exponent}") # # # stg.kt = np.array([[1.38e-3], [6.02e-4]]) # Values of kt for 500kHz and 1MHz # stg.kt = np.array([[0.5], [0.5]]) # # kt = stg.kt # # kt = np.array([]) # # for i, v in enumerate(stg.kt): # # kt = np.append(kt, self.inv_hc.kt_corrected(r=stg.r[i, :], # # water_velocity=stg.water_velocity, # # RxGain=0, # # TxGain=0, # # kt_ref=stg.kt[i])) # # kt = np.reshape(kt, (len(kt), 1)) # print(f"kt = {kt}, kt.shape = {kt.shape}") # kt2D = np.repeat(np.array(kt), stg.r.shape[1], axis=1) # print(f"kt2D.shape = {kt2D.shape}") # # print(f"kt2D = {kt2D}") # kt3D = np.repeat(kt2D[:, :, np.newaxis], stg.t.shape[1], axis=2) # print(f"kt3D.shape = {kt3D.shape}") # # J_freq1, J_freq2 = self.compute_J(freq_ind=freq1, kt=kt3D), self.compute_J(freq_ind=freq2, kt=kt3D) # print(f"J_freq1 = {J_freq1.shape}, J_freq2 = {J_freq2.shape}") # # r_sample_ind = [] # t_sample_ind = [] # for i in range(len(stg.sample_depth[fine_position_list])): # # print(-stg.sample_depth[i]) # # print(-stg.sample_time[i]) # r_sample_ind.append(np.where(np.abs(stg.r[freq1, :] - (-stg.sample_depth[i])) == # np.nanmin(np.abs(stg.r[freq1, :] - (-stg.sample_depth[i]))))) # # print(np.abs(stg.t[0, :] - (-stg.sample_time[i]))) # t_sample_ind.append(np.where(np.abs(stg.t[freq1, :] - (stg.sample_time[i])) == # np.nanmin(np.abs(stg.t[freq1, :] - (stg.sample_time[i]))))) # print(f"r_sample_ind = {r_sample_ind}") # print(f"t_sample_ind = {t_sample_ind}") # # print(f"stg.BS freq1 = {stg.BS_cross_section[freq1, r_sample_ind[-1], t_sample_ind[-1]]}") # print(f"stg.BS freq2 = {stg.BS_cross_section[freq2, r_sample_ind[-1], t_sample_ind[-1]]}") # # print(f"J_freq1[r_sample_ind[-1], t_sample_ind[-1]] : {J_freq1[r_sample_ind[-1][0][0], t_sample_ind[-1][0][0]]}") # # print(f"J_freq1[r_sample_ind[-1]+-n, t_sample_ind[-1]+-n] : {J_freq1[r_sample_ind[-1][0][0], t_sample_ind[-1][0][0]:t_sample_ind[-1][0][0]].mean(axis=0)}") # # # delta_t = 0 # alpha_s_freq1, alpha_s_freq2 = ( # self.inv_hc.alpha_s(sv=sv_freq1, # j_cross_section=np.mean(J_freq1[r_sample_ind[-1][0][0], t_sample_ind[-1][0][0]]), # depth=stg.r[freq1, r_sample_ind[-1][0][0]], alpha_w=alpha_w_freq1), # self.inv_hc.alpha_s(sv=sv_freq2, # j_cross_section=np.mean(J_freq2[r_sample_ind[-1][0][0], t_sample_ind[-1][0][0]]), # # j_cross_section=J_freq2[r_sample_ind[-1], t_sample_ind[-1]], # depth=stg.r[freq2, r_sample_ind[-1][0][0]], alpha_w=alpha_w_freq2)) # # # avec J (alpha_w = 0.03578217234512747) # # alpha_s_freq1 = -0.12087339 # # alpha_s_freq2 = -0.01437704 # # # avec log(J) # # alpha_s_freq1 = -1.91967628 # # alpha_s_freq2 = -1.87942544 # # # --- Calculation of alpha_s with FCB slope --- # # # R_real = np.repeat(self.range_cells_function()[:, :, np.newaxis], stg.t.shape[1], axis=2) # # water_attenuation = np.full((2, stg.r.shape[1], stg.t.shape[1]), 1) # # water_attenuation[0, :, :] = alpha_w_freq1*water_attenuation[0, :, :] # # water_attenuation[1, :, :] = alpha_w_freq2*water_attenuation[1, :, :] # # if stg.BS_stream_bed.size == 0: # # stg.FCB = (np.log(stg.BS_cross_section[[freq1, freq2], :, :]) + np.log(R_real[[freq1, freq2], :, :]) + # # 2 * water_attenuation * R_real[[freq1, freq2], :, :]) # # elif (stg.BS_stream_bed_pre_process_average.size == 0) and (stg.BS_stream_bed_pre_process_SNR.size == 0): # # stg.FCB = (np.log(stg.BS_stream_bed[[freq1, freq2], :, :]) + np.log(R_real[[freq1, freq2], :, :]) + # # 2 * water_attenuation * R_real[[freq1, freq2], :, :]) # # elif stg.BS_stream_bed_pre_process_SNR.size == 0: # # stg.FCB = (np.log(stg.BS_stream_bed_pre_process_average[[freq1, freq2], :, :]) + np.log(R_real[[freq1, freq2], :, :]) + # # 2 * water_attenuation * R_real[[freq1, freq2], :, :]) # # else: # # stg.FCB = (np.log(stg.BS_stream_bed_pre_process_SNR[[freq1, freq2], :, :]) + np.log(R_real[[freq1, freq2], :, :]) + # # 2 * water_attenuation * R_real[[freq1, freq2], :, :]) # # # # print(f"FCB shape : {stg.FCB.shape}") # # # # y1 = stg.FCB[freq1, 5:138, t_sample_ind[-1][0][0]] # # x1 = stg.r[freq1, 5:138] # # lin_reg_compute1 = stats.linregress(x1, y1) # # # # y2 = stg.FCB[freq2, 5:138, t_sample_ind[-1][0][0]] # # x2 = stg.r[freq2, 5:138] # # lin_reg_compute2 = stats.linregress(x2, y2) # # # # print(f"lin_reg_compute1 : {lin_reg_compute1}") # # print(f"lin_reg_compute2 : {lin_reg_compute2}") # # # # fig, ax = plt.subplots(nrows=1, ncols=2) # # ax[0].plot(x1, y1, ls='solid', c='k') # # ax[0].plot(x1, x1*lin_reg_compute1.slope + lin_reg_compute1.intercept, ls='dashed', c='b') # # ax[0].set_xlabel("Distance from transducer (m)") # # ax[0].set_ylabel("FCB") # # ax[0].set_title("Frequency 500kHz") # # ax[1].plot(x2, y2, ls='solid', c='k') # # ax[1].plot(x2, x2*lin_reg_compute2.slope + lin_reg_compute2.intercept, ls='solid', c='r') # # ax[1].set_xlabel("Distance from transducer (m)") # # ax[1].set_ylabel("FCB") # # ax[1].set_title("Frequency 1MHz") # # plt.show() # # # # alpha_s_freq1 , alpha_s_freq2 = -0.5*lin_reg_compute1.slope, -0.5*lin_reg_compute2.slope # # alpha_s_freq1 = 0.35107724188865586 # # alpha_s_freq2 = 0.37059368399238274 # print(f"alpha_s_freq1 = {alpha_s_freq1}, alpha_s_freq2 = {alpha_s_freq2}") # # range_lin_interp, M_profile_fine = self.inv_hc.M_profile_SCC_fine_interpolated( # sample_depth=-stg.sample_depth[:], # M_profile=stg.Ctot_fine[:], # range_cells=stg.r[0, :], # r_bottom=np.array([])) # stg.r_bottom[t_sample_ind[0][0]] is empty # # M_profile_fine = M_profile_fine[:len(range_lin_interp)] # # range_lin_interp, M_profile_fine = 3.2, 6.5 # # print(f"range_lin_interp : {range_lin_interp}") # print(f"M_profile_fine : {M_profile_fine}") # # # zeta_freq1, zeta_freq2 = (alpha_s_freq1 / (M_profile_fine[0]*(3.19127224 - 0.52102404)), # # alpha_s_freq2 / (M_profile_fine[0]*(3.19127224 - 0.52102404))) # zeta_freq1, zeta_freq2 = ( # self.inv_hc.zeta(alpha_s=alpha_s_freq1, r=stg.r[freq1, :], M_profile_fine=M_profile_fine), # self.inv_hc.zeta(alpha_s=alpha_s_freq2, r=stg.r[freq2, :], M_profile_fine=M_profile_fine)) # # zeta_freq1, zeta_freq2 = zeta_freq1*1e-8, zeta_freq2*1e-8 # # zeta_freq1 = 0.06417348381928434 # # zeta_freq2 = 0.06774089842814904 # # zeta_freq1, zeta_freq2 = 0.03018602, 0.05496619 # print(f"zeta_freq1 = {zeta_freq1}, zeta_freq2 = {zeta_freq2}") # # # zeta_freq1, zeta_freq2 = 1e-10*self.inv_hc.zeta(ind=1), 1e1*self.inv_hc.zeta(ind=2) # # print(f"zeta_freq1 = {zeta_freq1}, zeta_freq2 = {zeta_freq2}") # # # --- Fill spinboxes with values of parameters --- # self.spinbox_ks_freq1.setValue(ks_freq1) # self.spinbox_ks_freq2.setValue(ks_freq2) # self.spinbox_sv_freq1.setValue(sv_freq1) # self.spinbox_sv_freq2.setValue(sv_freq2) # self.spinbox_X.setValue(X_exponent) # self.spinbox_alphas_freq1.setValue(alpha_s_freq1) # self.spinbox_alphas_freq2.setValue(alpha_s_freq2) # self.spinbox_zeta_freq1.setValue(zeta_freq1) # self.spinbox_zeta_freq2.setValue(zeta_freq2) # # # fig, ax = plt.subplots(nrows=2, ncols=1) # # pcm1 = ax[0].pcolormesh(stg.t[0, :], -stg.r[0, :], J_freq1, # # cmap='rainbow', shading='gouraud') # # cbar1 = fig.colorbar(pcm1, ax=ax[0], shrink=1, location='right') # # cbar1.set_label(label='J (/m', rotation=270, labelpad=15) # # pcm2 = ax[1].pcolormesh(stg.t[0, :], -stg.r[0, :], J_freq2, # # cmap='rainbow', shading='gouraud') # # cbar2 = fig.colorbar(pcm2, ax=ax[1], shrink=1, location='right') # # cbar2.set_label(label='J (/m', rotation=270, labelpad=15) # # fig.supxlabel("Time (sec)", fontsize=10) # # fig.supylabel("Depth (m)", fontsize=10) # # plt.show() # # stg.VBI_cross_section = self.inv_hc.VBI_cross_section(stg.freq[freq1], stg.freq[freq2], # zeta_freq1, zeta_freq2, # J_freq1, J_freq2, # stg.r_2D[freq2, :, :stg.t.shape[1]], # alpha_w_freq1, alpha_w_freq2, # X_exponent) # # # # stg.SSC_fine = self.inv_hc.SSC_fine(zeta_freq2, stg.r_2D[freq2, :, :stg.t.shape[1]], # stg.VBI_cross_section, stg.freq[freq2], X_exponent, J_freq2, # np.full(shape=(stg.r.shape[1], stg.t.shape[1]), fill_value=alpha_w_freq2)) # # stg.SSC_fine = self.inv_hc.SSC_fine(stg.zeta[int(self.combobox_frequency_SSC.currentIndex())], # # stg.r_2D[int(stg.frequency_to_compute_SSC[0]), :, :stg.t.shape[1]], # # stg.VBI_cross_section, # # stg.frequency_to_compute_SSC[1], # # stg.X_exponent, # # stg.J_cross_section[self.combobox_frequency_SSC.currentIndex(), :, :]) # # print("SSC fine shape ", stg.SSC_fine.shape) # # stg.SSC_sand = self.inv_hc.SSC_sand(stg.VBI_cross_section, stg.freq[freq2], X_exponent, ks_freq2) # # stg.SSC_sand = self.inv_hc.SSC_sand(stg.VBI_cross_section, # # stg.frequency_to_compute_SSC[1], # # stg.X_exponent, # # stg.ks) # # # print("SSC sand shape ", stg.SSC_sand.shape) # # # def plot_SSC_2D_fields(self): # # # # if self.canvas_SSC_2D_field == None: # # # # self.figure_SSC_2D_field, self.axis_SSC_2D_field = plt.subplots(nrows=2, ncols=1, layout="constrained") # # self.canvas_SSC_2D_field = FigureCanvas(self.figure_SSC_2D_field) # # self.verticalLayout_groupbox_SSC_2D_field.addWidget(self.canvas_SSC_2D_field) # # # # self.plot_SSC_fine() # # self.plot_SSC_sand() # # # # else: # # # # self.verticalLayout_groupbox_SSC_2D_field.removeWidget(self.canvas_SSC_2D_field) # # self.verticalLayout_groupbox_SSC_2D_field.addWidget(self.canvas_SSC_2D_field) # # # # self.plot_SSC_fine() # # self.plot_SSC_sand() # # # def update_plot_SSC_fine_and_sand(self): # # self.verticalLayout_groupbox_SSC_2D_field.removeWidget(self.canvas_SSC_2D_field) # # # # self.figure_SSC_2D_field, self.axis_SSC_2D_field = plt.subplots(nrows=2, ncols=1, layout="constrained") # # self.canvas_SSC_2D_field = FigureCanvas(self.figure_SSC_2D_field) # # self.verticalLayout_groupbox_SSC_2D_field.addWidget(self.canvas_SSC_2D_field) # # # # self.plot_SSC_fine() # # self.plot_SSC_sand() # # # def plot_SSC_fine(self): # # # # self.slider.setMaximum(stg.t.shape[1]) # # # # self.figure_SSC_fine.clf() # # self.verticalLayout_groupbox_plot_SSC_fine.removeWidget(self.canvas_SSC_fine) # # # # self.figure_SSC_fine, self.axis_SSC_fine = plt.subplots(nrows=1, ncols=1, layout="constrained") # # self.canvas_SSC_fine = FigureCanvas(self.figure_SSC_fine) # # self.verticalLayout_groupbox_plot_SSC_fine.addWidget(self.canvas_SSC_fine) # # # # # val_min = 1e-2 # # # val_max = 15 # # val_min = np.nanmin(stg.SSC_fine) # # val_max = np.nanmax(stg.SSC_fine) # # # print('val_min fine = ', val_min) # # # print('val_max fine =', val_max) # # # print('val_min fine = ', np.nanmin(stg.VBI_cross_section)) # # # print('val_max fine =', np.nanmax(stg.VBI_cross_section)) # # # if val_min == 0: # # # val_min = 0.5 # # # print('val_min update =', val_min) # # # # # pcm_SSC_fine = self.axis_SSC_2D_field[0].pcolormesh(stg.t[0, :], # # # -stg.r[0, :], # # # stg.SSC_fine, # # # # np.log(stg.VBI_cross_section/1.1932980954310682e-27), # # # # cmap='jet', # # # # vmin=val_min, vmax=val_max) # # # cmap = 'rainbow', # # # norm=LogNorm(vmin=1e-1, vmax=15)) # # # # shading='gouraud') # # if stg.ABS_name == "Aquascat 1000R": # # # # pcm_SSC_fine = self.axis_SSC_fine.pcolormesh(stg.t[0, :], # # -stg.r[0, :], # # stg.SSC_fine, # # cmap='rainbow', # # norm=LogNorm(vmin=1e0, vmax=15), # # shading='gouraud') # # # # cbar_SSC_fine = self.figure_SSC_fine.colorbar(pcm_SSC_fine, ax=self.axis_SSC_fine, shrink=1, # # location='right') # # cbar_SSC_fine.set_label(label='Fine SSC (g/L', rotation=270, labelpad=15) # # # # elif stg.ABS_name == "UB-SediFlow": # # pcm_SSC_fine = self.axis_SSC_fine.pcolormesh(stg.t[0, :], # # -stg.r[0, :], # # stg.SSC_fine, # # cmap='rainbow', # # norm=LogNorm(vmin=1e-2, vmax=10), # # shading='gouraud') # # # # # # if stg.r_bottom.size != 0: # # self.axis_SSC_fine.plot(stg.t[0, :], # # -stg.r_bottom, # # color='black', linewidth=1, linestyle="solid") # # # self.axis_SSC_2D_field[0].plot(stg.t[int(stg.frequency_to_compute_SSC[0]), :], # # # -stg.r_bottom, # # # color='black', linewidth=1, linestyle="solid") # # # # if self.combobox_fig_choice.currentText() == "Inverted SSC fine vertical profile": # # self.axis_SSC_fine.plot(stg.t[0, self.slider.value() - 1] * np.ones(stg.r.shape[1]), # # -stg.r[0, :], # # color='black', linestyle="solid", linewidth=2) # # # # self.figure_SSC_fine.supxlabel("Time (sec)", fontsize=10) # # self.figure_SSC_fine.supylabel("Depth (m)", fontsize=10) # # self.figure_SSC_fine.canvas.draw_idle() # # # # def plot_SSC_sand(self): # # # # self.slider.setMaximum(stg.t.shape[1]) # # # # self.figure_SSC_sand.clf() # # self.verticalLayout_groupbox_plot_SSC_sand.removeWidget(self.canvas_SSC_sand) # # # # self.figure_SSC_sand, self.axis_SSC_sand = plt.subplots(nrows=1, ncols=1, layout="constrained") # # self.canvas_SSC_sand = FigureCanvas(self.figure_SSC_sand) # # self.verticalLayout_groupbox_plot_SSC_sand.addWidget(self.canvas_SSC_sand) # # # # val_min = 1e-2 # # val_max = 2 # # val_min = np.nanmin(stg.SSC_sand) # # val_max = np.nanmax(stg.SSC_sand) # # # val_min = np.nanmin(np.log(stg.VBI_cross_section)) # # # val_max = np.nanmax(np.log(stg.VBI_cross_section)) # # # print('val_min sand = ', val_min) # # # print('val_max sand =', val_max) # # # print('val_min sand = ', np.nanmin(stg.VBI_cross_section)) # # # print('val_max sand = ', np.nanmax(stg.VBI_cross_section)) # # if val_min == 0: # # val_min = 0.5 # # # print('val_min update =', val_min) # # # # # print(stg.SSC_sand) # # # # if stg.ABS_name == "Aquascat 1000R": # # # # pcm_SSC_sand = self.axis_SSC_sand.pcolormesh(stg.t[0, :], # # -stg.r[0, :], # # (stg.SSC_sand), # # cmap='rainbow', # # # vmin=-60, vmax=-45) # # # vmin=1e-2, vmax=10) # # # vmin=val_min, vmax=val_max, # # norm=LogNorm(vmin=1e-2, vmax=2), # # shading='gouraud') # # # # cbar_SSC_sand = self.figure_SSC_sand.colorbar(pcm_SSC_sand, ax=self.axis_SSC_sand, shrink=1, # # location='right') # # cbar_SSC_sand.set_label(label='Sand SSC (g/L', rotation=270, labelpad=15) # # # # elif stg.ABS_name == "UB-SediFlow": # # pcm_SSC_sand = self.axis_SSC_sand.pcolormesh(stg.t[0, :], # # -stg.r[0, 5:155], # # (stg.SSC_sand[5:155, :]), # # cmap="plasma", # # # cmap='rainbow', # # vmin=0, vmax=10, # # # vmin=1e-2, vmax=10) # # # vmin=val_min, vmax=val_max, # # # norm=LogNorm(vmin=1e-2, vmax=1), # # shading='gouraud') # # # self.axis_SSC_2D_field[1].plot(stg.t[1, 52] * np.ones(len(stg.r[1, 5:152])), -stg.r[1, 5:152], # # # c='b', ls='solid', lw=2) # # # self.axis_SSC_2D_field[1].plot(stg.t[1, ] * np.ones(len(stg.r[1, 5:152])), -stg.r[1, 5:152], # # # c='red', ls='solid', lw=2) # # # self.axis_SSC_2D_field[1].plot(stg.t[1, 777] * np.ones(len(stg.r[1, 5:152])), -stg.r[1, 5:152], # # # c='red', ls='solid', lw=2) # # # # # pcm_SSC_sand = self.axis_SSC_2D_field[1].pcolormesh(stg.t[int(stg.frequency_to_compute_SSC[0]), :], # # # -stg.r[int(stg.frequency_to_compute_SSC[0]), :], # # # stg.SSC_sand, # # # cmap='rainbow', # # # # vmin=val_min, vmax=val_max, # # # norm=LogNorm(vmin=1e-2, vmax=2), # # # shading='gouraud') # # # # if stg.r_bottom.size: # # self.axis_SSC_sand.plot(stg.t[0, :], # # -stg.r_bottom, # # color='black', linewidth=1, linestyle="solid") # # # self.axis_SSC_2D_field[1].plot(stg.t[int(stg.frequency_to_compute_SSC[0]), :], # # # -stg.r_bottom, # # # color='black', linewidth=1, linestyle="solid") # # # # if self.combobox_fig_choice.currentText() == "Inverted SSC sand vertical profile": # # self.axis_SSC_sand.plot(stg.t[0, self.slider.value() - 1] * np.ones(stg.r.shape[1]), # # -stg.r[0, :], # # color='black', linestyle="solid", linewidth=2) # # # # self.figure_SSC_sand.supxlabel("Time (sec)", fontsize=10) # # self.figure_SSC_sand.supylabel("Depth (m)", fontsize=10) # # self.figure_SSC_sand.canvas.draw_idle() # # def plot_inverted_SSC_sand_vertical_profile(self): # # # self.combobox_fig_choice.setCurrentIndex(1) # # if self.combobox_fig_choice.currentText() == "Inverted SSC sand vertical profile": # # self.axis_SSC_sand_vertical_profile.cla() # # # --- Plot inverted SSC vertical profile --- # self.axis_SSC_sand_vertical_profile.plot(stg.SSC_sand[:, self.slider.value()-1], # -stg.r[self.combobox_freq2.currentIndex(), :], # color='black', ls='solid') # # self.axis_SSC_sand_vertical_profile.set_xlabel('Sand concentration (g/l)', weight='bold') # self.axis_SSC_sand_vertical_profile.set_ylabel('Depth (m)', weight='bold') # # self.axis_SSC_sand_vertical_profile.set_xlim(0, 10) # # self.figure_SSC_sand_vertical_profile.canvas.draw_idle() # # def plot_inverted_SSC_fine_vertical_profile(self): # # if self.combobox_fig_choice.currentText() == "Inverted SSC vs Measured SSC": # # self.axis_SSC_fine_vertical_profile.cla() # # # --- Plot inverted SSC vertical profile --- # self.axis_SSC_fine_vertical_profile.plot(stg.r[self.combobox_freq2.currentIndex(), :], # stg.SSC_sand[:, self.slider.value()-1], # color='black', ls='solid') # # self.axis_SSC_fine_vertical_profile.set_xlabel('Sand concentration (g/l)', weight='bold') # self.axis_SSC_fine_vertical_profile.set_ylabel('Depth (m)', weight='bold') # # self.figure_SSC_fine_vertical_profile.canvas.draw_idle() # # def plot_inverted_SSC_vs_measured_SSC(self): # # if self.combobox_fig_choice.currentText() == "Inverted SSC vs Measured SSC": # # self.figure_SSC_measured_vs_inverted.clf() # self.verticalLayout_groupbox_SSC_profiles_or_measured_vs_inverted.removeWidget(self.canvas_SSC_measured_vs_inverted) # # self.verticalLayout_groupbox_SSC_profiles_or_measured_vs_inverted.addWidget(self.canvas_SSC_measured_vs_inverted) # # sample_depth_position = [] # for i in range(stg.sample_depth.shape[0]): # sample_depth_position.append( # np.where(np.abs(stg.r[0, :] + stg.sample_depth[i]) == # np.min(np.abs(stg.r[0, :] + stg.sample_depth[i])))[0][0]) # # sample_time_position = [] # for j in range(stg.sample_time.shape[0]): # sample_time_position.append( # np.where(np.abs(stg.t[0, :] - stg.sample_time[j]) == # np.min(np.abs(stg.t[0, :] - stg.sample_time[j])))[0][0]) # # # print("Ctot fine : ", stg.Ctot_fine) # # print("SCC fine : ", stg.SSC_fine[sample_depth_position, sample_time_position]) # # print("Ctot sand : ", stg.Ctot_sand) # # print("SCC sand : ", stg.SSC_sand[sample_depth_position, sample_time_position]) # # self.axis_SSC_measured_vs_inverted.cla() # # self.axis_SSC_measured_vs_inverted.plot(stg.Ctot_fine, stg.SSC_fine[sample_depth_position, sample_time_position], ls=" ", marker='v', color='black', label='Fine SSC') # self.axis_SSC_measured_vs_inverted.plot(stg.Ctot_sand, # stg.SSC_sand[sample_depth_position, sample_time_position], # ls=" ", marker='x', color='black', label='Sand SSC') # # self.axis_SSC_measured_vs_inverted.set_xscale('log') # self.axis_SSC_measured_vs_inverted.set_yscale('log') # self.axis_SSC_measured_vs_inverted.plot([0, 10], [0, 10], color='black', lw=1) # self.axis_SSC_measured_vs_inverted.set_xlabel('Measured SSC (g/l)', weight='bold') # self.axis_SSC_measured_vs_inverted.set_ylabel('Inverse SSC (g/l)', weight='bold') # self.axis_SSC_measured_vs_inverted.legend() # # # def insert_slider_for_vertical_profile_figure_area(self): # # # # if ((self.combobox_fig_choice.currentText() == "Inverted SSC fine vertical profile") or # # (self.combobox_fig_choice.currentText() == "Inverted SSC sand vertical profile")): # # # # self.verticalLayout_groupbox_SSC_profiles_or_measured_vs_inverted.removeWidget(self.canvas_SSC_measured_vs_inverted) # # self.verticalLayout_groupbox_SSC_profiles_or_measured_vs_inverted.addWidget(self.canvas_SSC_measured_vs_inverted) # # # # # --- Slider for moving the profile --- # # self.horizontalLayout_slider = QHBoxLayout() # # self.verticalLayout_groupbox_SSC_profiles_or_measured_vs_inverted.addLayout(self.horizontalLayout_slider) # # # # self.pushbutton_slider_left = QPushButton() # # self.pushbutton_slider_left.setIcon(self.icon_triangle_left) # # self.horizontalLayout_slider.addWidget(self.pushbutton_slider_left) # # # # self.pushbutton_slider_left.clicked.connect(self.slide_profile_number_to_left) # # # # self.pushbutton_slider_right = QPushButton() # # self.pushbutton_slider_right.setIcon(self.icon_triangle_right) # # self.horizontalLayout_slider.addWidget(self.pushbutton_slider_right) # # # # self.pushbutton_slider_right.clicked.connect(self.slide_profile_number_to_right) # # # # self.lineEdit_slider = QLineEdit() # # self.lineEdit_slider.setText("1") # # self.lineEdit_slider.setFixedWidth(50) # # self.horizontalLayout_slider.addWidget(self.lineEdit_slider) # # # # self.lineEdit_slider.returnPressed.connect(self.profile_number_on_lineEdit) # # # # self.slider = QSlider() # # self.horizontalLayout_slider.addWidget(self.slider, 9) # # # # self.slider.setOrientation(Qt.Horizontal) # # self.slider.setCursor(Qt.OpenHandCursor) # # self.slider.setMinimum(1) # # self.slider.setMaximum(stg.t.shape[1]) # # self.slider.setTickInterval(1) # # self.slider.setValue(1) # # # # self.slider.valueChanged.connect(self.update_lineEdit_by_moving_slider) # # # # self.slider.valueChanged.connect(self.plot_inverted_SSC_fine_vertical_profile) # # # # self.slider.valueChanged.connect(self.plot_SSC_sand) # # # # self.plot_inverted_SSC_fine_vertical_profile() # # self.update_plot_SSC_fine_and_sand() # # # # elif self.combobox_fig_choice.currentText() == "Inverted SSC vs Measured SSC": # # # # self.figure_SSC_sand.clf() # # self.figure_SSC_fine.clf() # # # # self.verticalLayout_groupbox_SSC_profiles_or_measured_vs_inverted.removeWidget(self.canvas_SSC_sand) # # self.verticalLayout_groupbox_SSC_profiles_or_measured_vs_inverted.removeWidget(self.canvas_SSC_fine) # # # # self.verticalLayout_groupbox_SSC_profiles_or_measured_vs_inverted.removeWidget(self.pushbutton_slider_right) # # self.verticalLayout_groupbox_SSC_profiles_or_measured_vs_inverted.removeWidget(self.pushbutton_slider_left) # # self.verticalLayout_groupbox_SSC_profiles_or_measured_vs_inverted.removeWidget(self.lineEdit_slider) # # self.verticalLayout_groupbox_SSC_profiles_or_measured_vs_inverted.removeWidget(self.slider) # # # # self.verticalLayout_groupbox_SSC_profiles_or_measured_vs_inverted.addWidget(self.canvas_SSC_measured_vs_inverted) # # # # self.figure_SSC_measured_vs_inverted.canvas.draw_idle() # # #