import sys import matplotlib.pyplot as plt from PyQt5.QtWidgets import (QWidget, QMainWindow, QApplication, QVBoxLayout, QHBoxLayout, QGroupBox, QComboBox, QGridLayout, QLabel, QPushButton, QSpinBox, QDoubleSpinBox, QAbstractSpinBox, QSpacerItem, QSizePolicy, QSlider, QLineEdit, QDial) from PyQt5.QtCore import QCoreApplication, Qt from PyQt5.QtGui import QStandardItemModel, QIcon, QPixmap import settings as stg import numpy as np from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolBar from matplotlib.colors import LogNorm from View.checkable_combobox import CheckableComboBox from Model.acoustic_inversion_method_high_concentration import AcousticInversionMethodHighConcentration class SedimentCalibrationTab(QWidget): ''' This class generates the Sediment Calibration Tab ''' def __init__(self, widget_tab): super().__init__() self.path_icon = "./icons/" self.icon_update = self.path_icon + "update.png" self.inv_hc = AcousticInversionMethodHighConcentration() ### --- General layout of widgets --- self.verticalLayoutMain = QVBoxLayout(widget_tab) self.horizontalLayoutTop = QHBoxLayout() self.verticalLayoutMain.addLayout(self.horizontalLayoutTop, 5) # 1O units is 100% , 1 units is 10% self.horizontalLayoutBottom = QHBoxLayout() self.verticalLayoutMain.addLayout(self.horizontalLayoutBottom, 5) # -------------------------------------------------------------------------------------------------------------- self.groupbox_acoustic_data = QGroupBox() self.horizontalLayoutTop.addWidget(self.groupbox_acoustic_data, 6) self.groupbox_Mfine_profile = QGroupBox() self.horizontalLayoutTop.addWidget(self.groupbox_Mfine_profile, 4) # ++++++++++++++++++++++++++++++ # +++ Groupbox acoustic data +++ self.verticalLayout_groupbox_acoustic_data = QVBoxLayout(self.groupbox_acoustic_data) # self.horizontalLayout_acoustic_data_choice = QHBoxLayout() # self.verticalLayout_groupbox_acoustic_data.addLayout(self.horizontalLayout_acoustic_data_choice) self.gridLayout_data_choice = QGridLayout() self.verticalLayout_groupbox_acoustic_data.addLayout(self.gridLayout_data_choice) self.pushbutton_update_acoustic_file = QPushButton() self.pushbutton_update_acoustic_file.setIcon(QIcon(self.icon_update)) # self.horizontalLayout_acoustic_data_choice.addWidget(self.pushbutton_update_acoustic_file) self.gridLayout_data_choice.addWidget(self.pushbutton_update_acoustic_file, 0, 0, 2, 1) self.combobox_acoustic_data_choice = QComboBox() # self.horizontalLayout_acoustic_data_choice.addWidget(self.combobox_acoustic_data_choice) self.gridLayout_data_choice.addWidget(self.combobox_acoustic_data_choice, 0, 1, 1, 1) self.combobox_freq1 = QComboBox() # self.horizontalLayout_acoustic_data_choice.addWidget(self.combobox_freq1) self.gridLayout_data_choice.addWidget(self.combobox_freq1, 0, 2, 1, 1) self.combobox_freq2 = QComboBox() # self.horizontalLayout_acoustic_data_choice.addWidget(self.combobox_freq2) self.gridLayout_data_choice.addWidget(self.combobox_freq2, 0, 3, 1, 1) # self.horizontalLayout_sample_data_choice = QHBoxLayout() # self.verticalLayout_groupbox_acoustic_data.addLayout(self.horizontalLayout_sample_data_choice) # self.label_fine_sample_choice = QLabel() # self.label_fine_sample_choice.setText("Fine sediments :") # self.horizontalLayout_sample_data_choice.addWidget(self.label_fine_sample_choice) self.combobox_fine_sample_choice = CheckableComboBox() # self.horizontalLayout_sample_data_choice.addWidget(self.combobox_fine_sample_choice) self.gridLayout_data_choice.addWidget(self.combobox_fine_sample_choice, 1, 1, 1, 1) # self.label_sand_sample_choice = QLabel() # self.label_sand_sample_choice.setText("Sand sediments :") # self.horizontalLayout_sample_data_choice.addWidget(self.label_sand_sample_choice) self.combobox_sand_sample_choice = CheckableComboBox() # self.horizontalLayout_sample_data_choice.addWidget(self.combobox_sand_sample_choice) self.gridLayout_data_choice.addWidget(self.combobox_sand_sample_choice, 1, 2, 1, 1) self.pushbutton_plot_sample = QPushButton() self.pushbutton_plot_sample.setText("Plot sample") # self.horizontalLayout_sample_data_choice.addWidget(self.pushbutton_plot_sample) self.gridLayout_data_choice.addWidget(self.pushbutton_plot_sample, 1, 3, 1, 1) self.canvas_BS = FigureCanvas() self.verticalLayout_groupbox_acoustic_data.addWidget(self.canvas_BS) # -------------------------------------------------------------------------------------------------------------- # +++++++++++++++++++++++++++++++++++++++++++ # +++ Groupbox Fine concentration profile +++ self.verticalLayout_groupbox_Mfine_profile = QVBoxLayout(self.groupbox_Mfine_profile) self.canvas_Mfine = FigureCanvas() self.toolbar_Mfine = NavigationToolBar(self.canvas_Mfine, self) self.verticalLayout_groupbox_Mfine_profile.addWidget(self.toolbar_Mfine) self.verticalLayout_groupbox_Mfine_profile.addWidget(self.canvas_Mfine) # -------------------------------------------------------------------------------------------------------------- self.groupbox_FCB = QGroupBox() self.horizontalLayoutBottom.addWidget(self.groupbox_FCB, 6) self.groupbox_sediment_calibration = QGroupBox() self.horizontalLayoutBottom.addWidget(self.groupbox_sediment_calibration, 4) # ++++++++++++++++++++ # +++ Groupbox FCB +++ self.verticalLayout_groupbox_FCB = QVBoxLayout(self.groupbox_FCB) self.canvas_FCB = FigureCanvas() self.toolbar_FCB = NavigationToolBar(self.canvas_FCB, self) self.verticalLayout_groupbox_FCB.addWidget(self.toolbar_FCB) self.verticalLayout_groupbox_FCB.addWidget(self.canvas_FCB) # +++++++++++++++++++++++++++++++++++++ # +++ Groupbox sediment calibration +++ self.groupbox_sediment_calibration.setTitle("Sediment calibration") self.gridLayout_groupbox_sediment_calibration = QGridLayout(self.groupbox_sediment_calibration) self.label_freq1 = QLabel("freq1") self.gridLayout_groupbox_sediment_calibration.addWidget(self.label_freq1, 0, 1, 1, 1) self.label_freq2 = QLabel("freq2") self.gridLayout_groupbox_sediment_calibration.addWidget(self.label_freq2, 0, 2, 1, 1) self.label_ks = QLabel() self.label_ks.setText("ks") self.gridLayout_groupbox_sediment_calibration.addWidget(self.label_ks, 1, 0, 1, 1) self.label_sv = QLabel() self.label_sv.setText("sv") self.gridLayout_groupbox_sediment_calibration.addWidget(self.label_sv, 2, 0, 1, 1) self.label_X = QLabel() self.label_X.setText("X") self.gridLayout_groupbox_sediment_calibration.addWidget(self.label_X, 3, 0, 1, 1) self.label_alphas = QLabel() self.label_alphas.setText("\u03B1s") self.gridLayout_groupbox_sediment_calibration.addWidget(self.label_alphas, 4, 0, 1, 1) self.label_zeta = QLabel() self.label_zeta.setText("\u03B6") self.gridLayout_groupbox_sediment_calibration.addWidget(self.label_zeta, 5, 0, 1, 1) # ============================================================================================================== # ---------------------------------------- Connect signal of widget -------------------------------------------- # ============================================================================================================== self.pushbutton_update_acoustic_file.clicked.connect(self.function_pushbutton_update_acoustic_file) self.pushbutton_plot_sample.clicked.connect(self.function_pushbutton_plot_sample) # ============================================================================================================== # ----------------------------------- Functions for Signal processing Tab -------------------------------------- # ============================================================================================================== def function_pushbutton_update_acoustic_file(self): self.update_acoustic_data() def function_pushbutton_plot_sample(self): self.sample_choice_for_calibration() self.plot_acoustic_recording() self.plot_profile_of_concentration_fine() def update_acoustic_data(self): self.combobox_acoustic_data_choice.clear() self.combobox_acoustic_data_choice.addItems(stg.filename_BS_raw_data) self.combobox_acoustic_data_choice.currentIndexChanged.connect(self.plot_acoustic_recording) self.combobox_freq1.clear() self.combobox_freq1.addItems(stg.freq_text[self.combobox_acoustic_data_choice.currentIndex()]) self.combobox_freq2.clear() self.combobox_freq2.addItems(stg.freq_text[self.combobox_acoustic_data_choice.currentIndex()]) self.combobox_freq2.currentIndexChanged.connect(self.plot_acoustic_recording) self.combobox_fine_sample_choice.clear() self.combobox_fine_sample_choice.addItems([f[0] for f in stg.sample_fine]) self.combobox_sand_sample_choice.clear() self.combobox_sand_sample_choice.addItems([s[0] for s in stg.sample_sand]) self.plot_acoustic_recording() def plot_acoustic_recording(self): self.verticalLayout_groupbox_acoustic_data.removeWidget(self.canvas_BS) self.fig_BS, self.axis_BS = plt.subplots(nrows=1, ncols=1, sharex=True, sharey=False, layout='constrained') self.canvas_BS = FigureCanvas(self.fig_BS) self.verticalLayout_groupbox_acoustic_data.addWidget(self.canvas_BS) if stg.BS_stream_bed[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,): val_min = np.nanmin( stg.BS_stream_bed[self.combobox_acoustic_data_choice.currentIndex()][self.combobox_freq2.currentIndex(), :, :]) val_max = np.nanmax( stg.BS_stream_bed[self.combobox_acoustic_data_choice.currentIndex()][self.combobox_freq2.currentIndex(), :, :]) if val_min == 0: val_min = 1e-5 self.axis_BS.pcolormesh( stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ self.combobox_freq2.currentIndex(), :], -stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ self.combobox_freq2.currentIndex(), :], stg.BS_stream_bed[self.combobox_acoustic_data_choice.currentIndex()][self.combobox_freq2.currentIndex(), :, :], cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max)) elif stg.BS_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,): val_min = np.nanmin( stg.BS_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ self.combobox_freq2.currentIndex(), :, :]) val_max = np.nanmax( stg.BS_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ self.combobox_freq2.currentIndex(), :, :]) if val_min == 0: val_min = 1e-5 self.axis_BS.pcolormesh( stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ self.combobox_freq2.currentIndex(), :], -stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ self.combobox_freq2.currentIndex(), :], stg.BS_cross_section[self.combobox_acoustic_data_choice.currentIndex()][ self.combobox_freq2.currentIndex(), :, :], cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max)) elif stg.BS_raw_data[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,): val_min = np.nanmin( stg.BS_raw_data[self.combobox_acoustic_data_choice.currentIndex()][self.combobox_freq2.currentIndex(), :, :]) val_max = np.nanmax( stg.BS_raw_data[self.combobox_acoustic_data_choice.currentIndex()][self.combobox_freq2.currentIndex(), :, :]) if val_min == 0: val_min = 1e-5 self.axis_BS.pcolormesh( stg.time[self.combobox_acoustic_data_choice.currentIndex()][self.combobox_freq2.currentIndex(), :], -stg.depth[self.combobox_acoustic_data_choice.currentIndex()][self.combobox_freq2.currentIndex(), :], stg.BS_raw_data[self.combobox_acoustic_data_choice.currentIndex()][self.combobox_freq2.currentIndex(), :, :], cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max)) print("stg.fine_sample_profile ", stg.fine_sample_profile) print("stg.sand_sample_target ", stg.sand_sample_target) if (stg.fine_sample_profile) or (stg.sand_sample_target): self.axis_BS.scatter([stg.time_fine[f[1]] for f in stg.fine_sample_profile], [stg.depth_fine[f[1]] for f in stg.fine_sample_profile], marker='o', s=20, facecolor="k", edgecolor="None") self.axis_BS.scatter([stg.time_sand[s[1]] for s in stg.sand_sample_target], [stg.depth_sand[s[1]] for s in stg.sand_sample_target], marker='o', s=50, facecolor="None", edgecolor="k") for i in stg.fine_sample_profile: self.axis_BS.text(stg.time_fine[i[1]] + 5, stg.depth_fine[i[1]] - .2, i[0], fontstyle="normal", fontweight="light", fontsize=8) for j in stg.sand_sample_target: self.axis_BS.text(stg.time_sand[j[1]] - 12, stg.depth_sand[j[1]] - .2, j[0], fontstyle="normal", fontweight="light", fontsize=8) elif (stg.sample_fine) or (stg.sample_sand): self.axis_BS.scatter(stg.time_fine, stg.depth_fine, marker='o', s=20, facecolor="k", edgecolor="None") self.axis_BS.scatter(stg.time_sand, stg.depth_sand, marker='o', s=50, facecolor="None", edgecolor="k") for i in stg.sample_fine: self.axis_BS.text(stg.time_fine[i[1]] + 5, stg.depth_fine[i[1]] - .2, i[0], fontstyle="normal", fontweight="light", fontsize=8) for j in stg.sample_sand: self.axis_BS.text(stg.time_sand[j[1]] - 12, stg.depth_sand[j[1]] - .2, j[0], fontstyle="normal", fontweight="light", fontsize=8) # self.axis_BS.set_xticks([]) # self.axis_BS.set_yticks([]) self.axis_BS.set_xlabel("Time (sec)") self.axis_BS.set_ylabel("Depth (m)") self.fig_BS.canvas.draw_idle() def sample_choice_for_calibration(self): # --- List selected fine samples --- stg.fine_sample_profile = [(f, int(f[1:]) - 1) for f in self.combobox_fine_sample_choice.currentData()] print(f"stg.fine_sample_profile : {stg.fine_sample_profile}") # --- List selected sand samples --- stg.sand_sample_target = [(s, int(s[1:]) - 1) for s in self.combobox_sand_sample_choice.currentData()] print(f"stg.sand_sample_target : {stg.sand_sample_target}") def plot_profile_of_concentration_fine(self): if stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()].shape != (0,): print("test find indice of time ", np.where( np.abs(stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()][self.combobox_freq2.currentIndex(), :] - (stg.time_fine[stg.fine_sample_profile[-1][1]])) == np.nanmin(np.abs(stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()][self.combobox_freq2.currentIndex(), :] - (stg.time_fine[stg.fine_sample_profile[-1][1]]))) )) print(stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()][self.combobox_freq2.currentIndex(), :]) print(stg.time_fine[stg.fine_sample_profile[-1][1]]) range_lin_interp, M_profile_fine = ( self.inv_hc.M_profile_SCC_fine_interpolated( sample_depth=[-stg.depth_fine[k[1]] for k in stg.fine_sample_profile], M_profile=[stg.Ctot_fine[k[1]] for k in stg.fine_sample_profile], range_cells=stg.depth_cross_section[self.combobox_acoustic_data_choice.currentIndex()][self.combobox_freq2.currentIndex(), :], r_bottom=stg.depth_bottom[self.combobox_acoustic_data_choice.currentIndex()] [ np.where( np.abs(stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()][self.combobox_freq2.currentIndex(), :] - stg.time_fine[stg.fine_sample_profile[-1][1]]) == np.nanmin(np.abs(stg.time_cross_section[self.combobox_acoustic_data_choice.currentIndex()][self.combobox_freq2.currentIndex(), :] - stg.time_fine[stg.fine_sample_profile[-1][1]])) )[0][0] ] ) ) # print(f"range_lin_interp : {range_lin_interp}") # print(f"M_profile_fine : {M_profile_fine}") else: range_lin_interp, M_profile_fine = ( self.inv_hc.M_profile_SCC_fine_interpolated( sample_depth=[-stg.depth_fine[k[1]] for k in stg.fine_sample_profile], M_profile=[stg.Ctot_fine[k[1]] for k in stg.fine_sample_profile], range_cells=stg.depth[self.combobox_acoustic_data_choice.currentIndex()][self.combobox_freq2.currentIndex(), :], r_bottom=stg.depth_bottom[self.combobox_acoustic_data_choice.currentIndex()])) M_profile_fine = M_profile_fine[:len(range_lin_interp)] print(f"M_profile_fine : {M_profile_fine}") # --- Plot profile of the concentration of the fine sediments --- self.verticalLayout_groupbox_Mfine_profile.removeWidget(self.canvas_Mfine) self.verticalLayout_groupbox_Mfine_profile.removeWidget(self.toolbar_Mfine) self.fig_Mfine, self.ax_Mfine = plt.subplots(1, 1, layout="constrained") self.canvas_Mfine = FigureCanvas(self.fig_Mfine) self.toolbar_Mfine = NavigationToolBar(self.canvas_Mfine, self) self.verticalLayout_groupbox_Mfine_profile.addWidget(self.toolbar_Mfine) self.verticalLayout_groupbox_Mfine_profile.addWidget(self.canvas_Mfine) self.ax_Mfine.plot([stg.Ctot_fine[c] for _, c in stg.fine_sample_profile], [stg.depth_fine[c] for _, c in stg.fine_sample_profile], marker="o", mfc="k", mec="k", ms=12, ls="None") self.ax_Mfine.plot(M_profile_fine[:len(range_lin_interp)], -range_lin_interp, marker="*", mfc="b", mec="b", ms=8, ls="None") self.ax_Mfine.set_xlabel("Concentration fine sediments (g/L)") self.ax_Mfine.set_ylabel("Depth (m)") for i in stg.fine_sample_profile: self.ax_Mfine.text(stg.time_fine[i[1]], stg.depth_fine[i[1]] - .05, i[0], fontstyle="normal", fontweight="light", fontsize=12) self.ax_Mfine.set_xlabel("Fine sediments concentration (g/L)") self.ax_Mfine.set_ylabel("Depth (m)") def range_cells_function(self): """ Computing the real cell size, that depends on the temperature """ # defaut Aquascat cell size aquascat_cell_size = stg.r[0, 1] - stg.r[0, 0] # Pulse duration tau = aquascat_cell_size * 2 / 1500 # figure 2.9 1500 vitesse du son entrée pour le paramètrage des mesures aquascat # Sound speed cel = self.inv_hc.water_velocity(self.spinbox_temperature_water_attenuation.value()) # Real cell size real_cell_size = cel * tau / 2 # voir fig 2.9 # Converting to real cell profile real_r = stg.r / aquascat_cell_size * real_cell_size # (/ aquascat_cell_size) pour ramener BS.r entre 0 et 1 # (* real_cell_size) pour remettre les échelles spatiales sur la taille réelle des cellules # R with right shape (numpy array) R_real = real_r # np.repeat(real_r, len(stg.freq), axis=1) return R_real def compute_FCB(self): print(f"self.range_cells_function() : {self.range_cells_function()}") print(f"self.range_cells_function() shape : {self.range_cells_function().shape}") R_real = np.repeat(self.range_cells_function()[:, :, np.newaxis], stg.t.shape[1], axis=2) print(f"R_real shape : {R_real.shape}") if (stg.BS_stream_bed_pre_process_average.size == 0) and (stg.BS_stream_bed_pre_process_SNR.size == 0): stg.FCB = (np.log(stg.BS_stream_bed) + np.log(R_real) + 2 * stg.water_attenuation * R_real) elif stg.BS_stream_bed_pre_process_SNR.size == 0: stg.FCB = (np.log(stg.BS_stream_bed_pre_process_average) + np.log(R_real) + 2 * stg.water_attenuation * R_real) else: stg.FCB = (np.log(stg.BS_stream_bed_pre_process_SNR) + np.log(R_real) + 2 * stg.water_attenuation * R_real) self.plot_FCB() # def fit_FCB_profile_with_linear_regression_and_compute_alphaS(self): # # if stg.FCB.size == 0: # msgBox = QMessageBox() # msgBox.setWindowTitle("Linear regression error") # msgBox.setIcon(QMessageBox.Warning) # msgBox.setText("Please compute FCB before") # msgBox.setStandardButtons(QMessageBox.Ok) # msgBox.exec() # else: # try: # y0 = stg.FCB[self.combobox_frequency_compute_alphaS.currentIndex(), :, self.slider.value()] # y = y0[np.where(np.isnan(y0) == False)] # # x0 = stg.r[0, :].reshape(-1) # x = x0[np.where(np.isnan(y0) == False)] # # value1 = np.where(np.round(np.abs(x - self.spinbox_alphaS_computation_from.value()), 2) # == np.min(np.round(np.abs(x - self.spinbox_alphaS_computation_from.value()), 2))) # value2 = np.where(np.round(np.abs(x - self.spinbox_alphaS_computation_to.value()), 2) # == np.min(np.round(np.abs(x - self.spinbox_alphaS_computation_to.value()), 2))) # # # print(np.round(np.abs(x - self.spinbox_alphaS_computation_from.value()), 2)) # # # print("value1 ", value1[0][0]) # # print(np.round(np.abs(x - self.spinbox_alphaS_computation_to.value()), 2)) # # print("value2 ", value2[0][0]) # # # print("y limited ", y[value1[0][0]:value2[0][0]]) # # lin_reg_compute = stats.linregress(x[value1[0][0]:value2[0][0]], y[value1[0][0]:value2[0][0]]) # except ValueError: # msgBox = QMessageBox() # msgBox.setWindowTitle("Linear regression error") # msgBox.setIcon(QMessageBox.Warning) # msgBox.setText("Please check boundaries to fit a linear line") # msgBox.setStandardButtons(QMessageBox.Ok) # msgBox.exec() # else: # stg.lin_reg = (lin_reg_compute.slope, lin_reg_compute.intercept) # # print(f"y = {stg.lin_reg[0]}x + {stg.lin_reg[1]}") # # self.label_alphaS.clear() # self.label_alphaS.setText(f"\u03B1s = {-0.5*stg.lin_reg[0]:.4f} dB/m") # # # for i, value_freq in enumerate(stg.freq): # # for k, value_t in enumerate(stg.t): # # # print(f"indice i: {i}, indice k: {k}") # # # print(f"values of FCB: {stg.FCB[:, i, k]}") # # y = stg.FCB[:, i, k] # # # print("y : ", y) # # # print(f"values of FCB where FCB is not Nan {y[np.where(np.isnan(y) == False)]}") # # # print(f"values of r where FCB is not Nan {x[np.where(np.isnan(y) == False)]}") # # lin_reg_compute = stats.linregress(x[np.where(np.isnan(y) == False)], y[np.where(np.isnan(y) == False)]) # # lin_reg_tuple = (lin_reg_compute.slope, lin_reg_compute.intercept) # # stg.lin_reg.append(lin_reg_tuple) # # # print(f"y = {lin_reg.slope}x + {lin_reg.intercept}") # # # plt.figure() # # plt.plot(stg.r, stg.FCB[:, 0, 825], 'k-', stg.r, lin_reg.slope*stg.r + lin_reg.intercept, "b--") # # plt.show() # # # print("lin_reg length ", len(stg.lin_reg)) # # print("lin_reg ", stg.lin_reg) # print([stg.time_fine[c] for _, c in stg.fine_sample_profile]) # print([stg.depth_fine[c] for _, c in stg.fine_sample_profile]) # --- Plot positions of the samples selected in comboboxes --- # self.scat.set_array(np.array([[stg.time_fine[c] for _, c in stg.fine_sample_profile], # [stg.depth_fine[c] for _, c in stg.fine_sample_profile]]).transpose()) # self.scat.set_array(np.array([[stg.time_fine[c] for _, c in stg.fine_sample_profile], # [stg.depth_fine[c] for _, c in stg.fine_sample_profile]]).transpose()) # self.gridLayout_groupbox_data_choice = QGridLayout(self.groupbox_acoustic_data_choice) # # self.gridLayout_groupbox_data_choice.addWidget(self.combobox_acoustic_data_choice, 0, 0, 1, 4) # self.combobox_acoustic_data_choice.addItems(["acoustic data 1", "acoustic data 2", "acoustic data 3"]) # # self.label_temperature = QLabel("Temperature = ") # self.gridLayout_groupbox_data_choice.addWidget(self.label_temperature, 1, 0, 1, 1) # # self.label_temperature_value = QLabel("7 °C") # self.gridLayout_groupbox_data_choice.addWidget(self.label_temperature_value, 1, 1, 1, 1) # # self.label_sound_velocity = QLabel("Sound velocity (m/s) = ") # self.gridLayout_groupbox_data_choice.addWidget(self.label_sound_velocity, 1, 2, 1, 1) # # self.spinbox_sound_velocity_value = QSpinBox() # self.gridLayout_groupbox_data_choice.addWidget(self.spinbox_sound_velocity_value, 1, 3, 1, 1) # # self.label_freq1 = QLabel("freq 1:") # self.gridLayout_groupbox_data_choice.addWidget(self.label_freq1, 2, 0, 1, 1) # self.combobox_freq1 = QComboBox() # self.combobox_freq1.addItems(["0.3 MHz", "0.5 MHz", "1 MHz", "5 MHz"]) # self.gridLayout_groupbox_data_choice.addWidget(self.combobox_freq1, 2, 1, 1, 1) # # self.label_freq2 = QLabel("freq 2:") # self.gridLayout_groupbox_data_choice.addWidget(self.label_freq2, 2, 2, 1, 1) # self.combobox_freq2 = QComboBox() # self.combobox_freq2.addItems(["0.3 MHz", "0.5 MHz", "1 MHz", "5 MHz"]) # self.gridLayout_groupbox_data_choice.addWidget(self.combobox_freq2, 2, 3, 1, 1) # # self.label_kt = QLabel("kt = :") # self.gridLayout_groupbox_data_choice.addWidget(self.label_kt, 3, 0, 1, 1) # # self.spinbox_kt_freq1 = QDoubleSpinBox() # self.spinbox_kt_freq1.setDecimals(5) # self.gridLayout_groupbox_data_choice.addWidget(self.spinbox_kt_freq1, 3, 1, 1, 1) # # self.spinbox_kt_freq2 = QDoubleSpinBox() # self.spinbox_kt_freq2.setDecimals(5) # self.gridLayout_groupbox_data_choice.addWidget(self.spinbox_kt_freq2, 3, 3, 1, 1) # # self.groupbox_acoustic_data_plot = QGroupBox() # self.verticalLayout_groupbox_acoustic_data_plot = QVBoxLayout(self.groupbox_acoustic_data_plot) # self.gridLayout_groupbox_data_choice.addWidget(self.groupbox_acoustic_data_plot, 4, 0, 1, 4) # # self.fig_acoustic, self.ax_acoustic = plt.subplots(nrows=1, ncols=1, layout="constrained") # self.canvas_fig_acoustic = FigureCanvas(self.fig_acoustic) # self.verticalLayout_groupbox_acoustic_data_plot.addWidget(self.canvas_fig_acoustic)