from Model.AquascatDataLoader import RawAquascatData import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.colors import LogNorm class AcousticDataLoader: def __init__(self, path_BS_raw_data: str): self.path_BS_raw_data = path_BS_raw_data # --- Load Backscatter acoustic raw data with RawAquascatData class --- self._data_BS = RawAquascatData(self.path_BS_raw_data) self._BS_raw_data = np.swapaxes(self._data_BS.V, 0, 1) self._freq = self._data_BS.Freq self._freq_text = self._data_BS.freqText self._r = np.repeat(np.transpose(self._data_BS.r), self._freq.shape[0], axis=0) self._time = np.repeat( np.transpose(np.array([t / self._data_BS.PingRate for t in range(self._data_BS.NumProfiles)])[:, np.newaxis]), self._freq.shape[0], axis=0) self._date = self._data_BS.date.date() self._hour = self._data_BS.date.time() self._nb_profiles = [self._data_BS.NumProfiles]*self._freq.shape[0] self._nb_profiles_per_sec = [self._data_BS.ProfileRate]*self._freq.shape[0] self._nb_cells = [self._data_BS.NumCells]*self._freq.shape[0] self._cell_size = [self._data_BS.cellSize]*self._freq.shape[0] self._pulse_length = [self._data_BS.TxPulseLength]*self._freq.shape[0] self._nb_pings_per_sec = [self._data_BS.PingRate]*self._freq.shape[0] self._nb_pings_averaged_per_profile = [self._data_BS.Average]*self._freq.shape[0] self._kt = self._data_BS.Kt.tolist() self._gain_rx = self._data_BS.RxGain.tolist() self._gain_tx = self._data_BS.TxGain.tolist() def reshape_BS_raw_data(self): BS_raw_cross_section = np.reshape(self._BS_raw_data, (self._r.shape[1] * self._time.shape[1], self._freq.shape[0]), order="F") return BS_raw_cross_section def reshape_r(self): r = np.zeros((self._r.shape[1] * self._time.shape[1], self._freq.shape[0])) for i, _ in enumerate(self._freq): for j in range(self._time.shape[1]): r[j*self._r.shape[1]:(j+1)*self._r.shape[1], i] = self._r[i, :] return r def compute_r_2D(self): r2D = np.zeros((self._freq.shape[0], self._r.shape[1], self._time.shape[1])) for f, _ in enumerate(self._freq): r2D[f, :, :] = np.repeat(np.transpose(self._r[f, :])[:, np.newaxis], self._time.shape[1], axis=1) return r2D def reshape_t(self): t = np.zeros((self._r.shape[1] * self._time.shape[1], self._freq.shape[0])) for i, _ in enumerate(self._freq): t[:, i] = np.repeat(self._time[i, :], self._r.shape[1]) return t