import sys from PyQt5.QtWidgets import (QWidget, QVBoxLayout, QHBoxLayout, QGroupBox, QPushButton, QComboBox, QLineEdit, QLabel, QGridLayout, QSpinBox, QDoubleSpinBox, QTableView, QTableWidget, QSpacerItem, QSizePolicy, QAbstractScrollArea, QFileDialog, QTableWidgetItem, QMessageBox, QScrollBar, QScrollArea, QProgressBar, QRadioButton, QFormLayout, QSlider) from PyQt5.QtGui import QPixmap, QIcon from PyQt5.QtCore import Qt, QCoreApplication, pyqtSignal, pyqtSlot, QEvent import numpy as np import pandas as pd import matplotlib.pyplot as plt # import matplotlib # matplotlib.use("Qt5Agg") from matplotlib.colors import LogNorm, CSS4_COLORS, BoundaryNorm from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolBar from os import path from copy import deepcopy import locale locale.setlocale(locale.LC_ALL, '') from scipy.signal import savgol_filter from pyqt_top_left_right_file_list_widget.topLeftRightFileListWidget import TopLeftRightFileListWidget # import Translation.biblio_string as bs import Translation.constant_string as cs from Model.TableModel import TableModel from Model.AquascatDataLoader import RawAquascatData from Model.acoustic_data_loader import AcousticDataLoader from Model.acoustic_data_loader_UBSediFlow import AcousticDataLoaderUBSediFlow # from View.window_noise_level_averaged_profile import WindowNoiseLevelTailAveragedProfile from View.sample_data_tab import SampleDataTab import settings as stg _translate = QCoreApplication.translate class AcousticDataTab(QWidget): ''' This class generates the Acoustic Data Tab ''' def __init__(self, tab_widget): super().__init__() self.path_icon = "./icons/" self.icon_folder = QIcon(self.path_icon + "folder.png") self.icon_triangle_left = QIcon(self.path_icon + "triangle_left.png") self.icon_triangle_right = QIcon(self.path_icon + "triangle_right.png") ### --- General layout of widgets --- self.verticalLayoutMain = QVBoxLayout(tab_widget) self.horizontalLayoutTop = QHBoxLayout() self.verticalLayoutMain.addLayout(self.horizontalLayoutTop, 4) # 1O units is 100% , 1 units is 10% self.horizontalLayoutBottom = QHBoxLayout() self.verticalLayoutMain.addLayout(self.horizontalLayoutBottom, 6) ### --- Layout of groupbox in the Top horizontal layout box # Download | Measurement information | Table of values | Display options self.groupbox_download = QGroupBox() self.horizontalLayoutTop.addWidget(self.groupbox_download, 3) self.groupbox_info = QGroupBox() self.horizontalLayoutTop.addWidget(self.groupbox_info, 3) # self.groupbox_table = QGroupBox() # self.horizontalLayoutTop.addWidget(self.groupbox_table, 4) self.groupbox_display_option = QGroupBox() self.horizontalLayoutTop.addWidget(self.groupbox_display_option, 4) ### --- Layout of groupbox in the Bottom horizontal layout box # 2D field of raw acoustic backscatter data | 2D field of Signal to Noise ratio self.groupbox_transect_2Dplot_raw_BS_data = QGroupBox() self.horizontalLayoutBottom.addWidget(self.groupbox_transect_2Dplot_raw_BS_data, 6) self.groupbox_plot_profile = QGroupBox() self.horizontalLayoutBottom.addWidget(self.groupbox_plot_profile, 4) # self.groupbox_transect_2Dplot_snr_data = QGroupBox() # self.horizontalLayoutBottom.addWidget(self.groupbox_transect_2Dplot_snr_data) # ===================================================== # TOP HORIZONTAL BOX LAYOUT # ===================================================== # +++++++++++++++++++++++++++ # | Group box Download file | # +++++++++++++++++++++++++++ self.verticalLayout_groupbox_download = QVBoxLayout(self.groupbox_download) # --- Group box Download multiple file --- # self.groupbox_multiple_acoustic_file = QGroupBox() # self.verticalLayout_groupbox_download_multiple_file = QVBoxLayout(self.groupbox_multiple_acoustic_file) # # self.groupbox_multiple_acoustic_file.setTitle("Multiple files") # self.topLeftRightFileListWidget = TopLeftRightFileListWidget() # # self.topLeftRightFileListWidget.show() # # self.verticalLayout_groupbox_download_multiple_file.addWidget(self.topLeftRightFileListWidget) # self.topLeftRightFileListWidget.setLayout(self.verticalLayout_groupbox_download_multiple_file) # --- Group box acoustic file --- self.groupbox_acoustic_file = QGroupBox() self.gridLayout_groupbox_acoustic_file = QGridLayout(self.groupbox_acoustic_file) self.combobox_ABS_system_choice = QComboBox() self.combobox_ABS_system_choice.addItems([" ", "Aquascat 1000R", "UB-SediFlow"]) self.gridLayout_groupbox_acoustic_file.addWidget(self.combobox_ABS_system_choice, 0, 0, 1, 1) self.pushbutton_acoustic_file = QPushButton() self.pushbutton_acoustic_file.setObjectName("pushbutton_acoustic_file") self.pushbutton_acoustic_file.setIcon(self.icon_folder) self.gridLayout_groupbox_acoustic_file.addWidget(self.pushbutton_acoustic_file, 0, 1, 1, 1) self.lineEdit_acoustic_file = QLineEdit() self.gridLayout_groupbox_acoustic_file.addWidget(self.lineEdit_acoustic_file, 0, 2, 1, 1) # Download Push Button event : connect button clicked signal to open file slot self.pushbutton_acoustic_file.clicked.connect(self.open_dialog_box) self.verticalLayout_groupbox_download.addWidget(self.groupbox_acoustic_file) # --- Group box noise file --- (move to signal processing tab) # self.groupbox_noise_file = QGroupBox() # self.gridLayout_groupbox_noise_file = QGridLayout(self.groupbox_noise_file) # # self.pushbutton_noise_level_with_tail_of_mean_profile = QPushButton() # self.gridLayout_groupbox_noise_file.addWidget(self.pushbutton_noise_level_with_tail_of_mean_profile, 0, 0, 1, 1) # self.pushbutton_noise_file = QPushButton() # self.pushbutton_noise_file.setObjectName("pushbutton_noise_file") # self.pushbutton_noise_file.setIcon(icon_folder) # self.gridLayout_groupbox_noise_file.addWidget(self.pushbutton_noise_file, 0, 1, 1, 1) # self.lineEdit_noise_file = QLineEdit() # self.gridLayout_groupbox_noise_file.addWidget(self.lineEdit_noise_file, 0, 2, 1, 1) # # self.label_date_groupbox_noise_file = QLabel() # self.gridLayout_groupbox_noise_file.addWidget(self.label_date_groupbox_noise_file, 1, 0, 1, 2) # self.label_hour_groupbox_noise_file = QLabel() # self.gridLayout_groupbox_noise_file.addWidget(self.label_hour_groupbox_noise_file, 1, 2, 1, 1) # # # Download Push Button event : connect button clicked signal to open file slot # self.pushbutton_noise_file.clicked.connect(self.open_dialog_box) # # self.verticalLayout_groupbox_download.addWidget(self.groupbox_noise_file) # --- Group box GPS file --- self.groupbox_gps = QGroupBox() self.verticalLayout_gps_input_data = QVBoxLayout(self.groupbox_gps) self.horizontalLayout_radiobutton_gps = QHBoxLayout() self.verticalLayout_gps_input_data.addLayout(self.horizontalLayout_radiobutton_gps) self.radiobutton_value = QRadioButton("Value") self.radiobutton_value.setChecked(True) self.radiobutton_value.toggled.connect(self.onClicked_radiobutton_gps) self.horizontalLayout_radiobutton_gps.addWidget(self.radiobutton_value) self.radiobutton_file = QRadioButton("File") # self.radiobutton_file.setChecked(False) self.radiobutton_file.toggled.connect(self.onClicked_radiobutton_gps) self.horizontalLayout_radiobutton_gps.addWidget(self.radiobutton_file) self.groupbox_gps_value = QGroupBox() self.gridLayout_gps_value = QGridLayout(self.groupbox_gps_value) self.label_distance_value = QLabel() self.label_distance_value.setText("Distance : ") self.gridLayout_gps_value.addWidget(self.label_distance_value, 0, 0, 1, 1) self.lineEdit_gps_value = QLineEdit() self.gridLayout_gps_value.addWidget(self.lineEdit_gps_value, 0, 1, 1, 1) self.label_m_per_record = QLabel("m / record") self.gridLayout_gps_value.addWidget(self.label_m_per_record, 0, 2, 1, 1) self.verticalLayout_gps_input_data.addWidget(self.groupbox_gps_value) self.groupbox_gps_file = QGroupBox() self.groupbox_gps_file.setEnabled(False) self.gridLayout_groupbox_gps_file = QGridLayout(self.groupbox_gps_file) self.combobox_gps_system_choice = QComboBox() self.combobox_gps_system_choice.addItems([" ", "GPS1", "GPS2", "no GPS"]) self.gridLayout_groupbox_gps_file.addWidget(self.combobox_gps_system_choice, 0, 0, 1, 2) self.pushbutton_gps_file = QPushButton() self.pushbutton_gps_file.setIcon(self.icon_folder) self.gridLayout_groupbox_gps_file.addWidget(self.pushbutton_gps_file, 0, 2, 1, 1) self.lineEdit_gps_file = QLineEdit() self.gridLayout_groupbox_gps_file.addWidget(self.lineEdit_gps_file, 0, 3, 1, 2) self.label_date_groupbox_gps_file = QLabel() self.gridLayout_groupbox_gps_file.addWidget(self.label_date_groupbox_gps_file, 1, 0, 1, 2) self.label_hour_groupbox_gps_file = QLabel() self.gridLayout_groupbox_gps_file.addWidget(self.label_hour_groupbox_gps_file, 1, 2, 1, 2) # Download Push Button event : connect button clicked signal to open file slot # self.pushButton_gpsfile.clicked.connect(self.open_dialog_box) self.verticalLayout_gps_input_data.addWidget(self.groupbox_gps_file) self.verticalLayout_groupbox_download.addWidget(self.groupbox_gps) # # --- Time offset line between ABS system time and GPS time --- self.gridLayout_time_offset = QGridLayout() self.label_time_offset = QLabel() # self.gridLayout_time_offset.addWidget(self.label_time_offset, 0, 0, 1, 1) self.gridLayout_groupbox_gps_file.addWidget(self.label_time_offset, 2, 0, 1, 1) self.label_acoustic_gps_time = QLabel() self.label_acoustic_gps_time.setText( "Tacoustic =" + " Tgps") # self.gridLayout_time_offset.addWidget(self.label_acoustic_gps_time, 0, 1, 1, 1) self.gridLayout_groupbox_gps_file.addWidget(self.label_acoustic_gps_time, 2, 1, 1, 1) self.combobox_plus_minus = QComboBox() self.combobox_plus_minus.addItem("+") self.combobox_plus_minus.addItem("-") # self.gridLayout_time_offset.addWidget(self.combobox_plus_minus, 0, 2, 1, 1) self.gridLayout_groupbox_gps_file.addWidget(self.combobox_plus_minus, 2, 2, 1, 1) self.spinbox_time_offset_value = QSpinBox() # self.gridLayout_time_offset.addWidget(self.spinbox_time_offset_value, 0, 3, 1, 1) self.gridLayout_groupbox_gps_file.addWidget(self.spinbox_time_offset_value, 2, 3, 1, 1) self.label_seconds = QLabel() self.label_seconds.setText("sec") # self.gridLayout_time_offset.addWidget(self.label_seconds, 0, 4, 1, 1) self.gridLayout_groupbox_gps_file.addWidget(self.label_seconds, 2, 4, 1, 1) self.verticalLayout_groupbox_download.addLayout(self.gridLayout_time_offset) # ++++++++++++++++++++++++++++++++++++++ # | Group Box Measurements information | # ++++++++++++++++++++++++++++++++++++++ # self.verticalLayout_groupbox_info = QVBoxLayout(self.groupbox_info) # # self.formLayout_temperature = QFormLayout() # self.label_temperature = QLabel("Temperature : ") # self.lineEdit_temperature = QLineEdit() # self.formLayout_temperature.addRow(self.label_temperature, self.lineEdit_temperature) # self.verticalLayout_groupbox_info.addLayout(self.formLayout_temperature) # # self.gridLayout_goupbox_info = QGridLayout() # self.verticalLayout_groupbox_info.addLayout(self.gridLayout_goupbox_info) # --- Information for Aquascat --- self.gridLayout_goupbox_info = QGridLayout(self.groupbox_info) self.label_temperature = QLabel("Temperature : ") self.gridLayout_goupbox_info.addWidget(self.label_temperature, 0, 0, 1, 1) self.spinbox_temperature = QDoubleSpinBox() self.spinbox_temperature.valueChanged.connect(self.temperature_value) self.gridLayout_goupbox_info.addWidget(self.spinbox_temperature, 0, 1, 1, 1) self.label_degreCelsius = QLabel("°C") self.gridLayout_goupbox_info.addWidget(self.label_degreCelsius, 0, 2, 1, 1) self.label_date_acoustic_file = QLabel() self.gridLayout_goupbox_info.addWidget(self.label_date_acoustic_file, 1, 0, 1, 2) self.label_hour_acoustic_file = QLabel() self.gridLayout_goupbox_info.addWidget(self.label_hour_acoustic_file, 1, 1, 1, 1) self.label_profiles = QLabel() self.label_profiles_per_sec = QLabel() self.label_cells = QLabel() # n_cell in UBSediFlow parameters self.label_cell_size = QLabel() # r_em in UBSediFlow parameters self.label_pulse_length = QLabel() # n_p / PRF with n_p = n_ech, nb of pulses to calculate one instantaneous profile self.label_pings_per_sec = QLabel() # PRF in UBSediFlow parameters self.label_pings_per_profile = QLabel() # n_profile/n_avg in UBSediFlow parameters self.label_freq = QLabel() self.label_kt = QLabel() self.label_rx = QLabel() # a0 in UBSediFlow parameters self.label_tx = QLabel() # a1 in UBSediFlow parameters # --- Information for UBSediFlow --- self.label_tr_out = QLabel() self.label_tr_out.setText("Channel : ") self.label_r_cell1 = QLabel() self.label_r_cell1.setText("1st cell size : ") self.label_r_dcell = QLabel() self.label_r_dcell.setText("Inter-cell distance : ") # self.groupbox_measurement_information_Aquascat() self.combobox_ABS_system_choice.currentTextChanged.connect(self.ABS_system_choice) # +++++++++++++++++++++++++++++ # | Group Box Table of values | # +++++++++++++++++++++++++++++ # self.verticalLayout_groupbox_table = QVBoxLayout(self.groupbox_table) # # self.horizontalLayout_pushbutton_fill_export_table = QHBoxLayout() # self.pushbutton_fill_table = QPushButton() # self.horizontalLayout_pushbutton_fill_export_table.addWidget(self.pushbutton_fill_table) # # self.pushbutton_fill_table.clicked.connect(self.fill_table) # # self.horizontalSpacerItem_between_pushbutton_fill_export_table = QSpacerItem(50, 10, # QSizePolicy.Expanding, QSizePolicy.Minimum) # self.horizontalLayout_pushbutton_fill_export_table.addItem( # self.horizontalSpacerItem_between_pushbutton_fill_export_table) # # self.pushbutton_export_table = QPushButton() # self.horizontalLayout_pushbutton_fill_export_table.addWidget(self.pushbutton_export_table) # # self.pushbutton_export_table.clicked.connect(self.export_table) # # self.verticalLayout_groupbox_table.addLayout(self.horizontalLayout_pushbutton_fill_export_table) # # # self.tableWidget = QTableWidget() # # self.tableWidget.setRowCount(10) # # self.tableWidget.setColumnCount(10) # # self.tableView = QTableView() # data = pd.DataFrame(np.zeros((10, 10))) # self.tableModel = TableModel(data) # self.tableView.setModel(self.tableModel) # self.verticalLayout_groupbox_table.addWidget(self.tableView) # #------------------------------------ # # self.tableView = QTableView() # # self.tableView.setSizeAdjustPolicy(QAbstractScrollArea.AdjustToContentsOnFirstShow) # # self.tableView.horizontalHeader().setStretchLastSection(True) # # # # df, tension, freq, depth = self._model.acoustic_data() # # print(np.zeros(len(tension), dtype=int)) # # print("dimension", list(tension)) # # self.data = pd.DataFrame({'Time (sec)': np.zeros(10, dtype=int), # # 'y (m)': np.zeros(10, dtype=int), # # 'z (m)': np.zeros(10, dtype=int), # # 'Frequency (MHz)': np.zeros(10, dtype=int), # # 'Voltage (V)': np.zeros(10, dtype=int), # # 'SNR': np.zeros(10, dtype=int)}) # # self.data = pd.DataFrame({'Time (sec)': np.zeros(len(tension), dtype=int), # # 'y (m)': np.zeros(len(tension), dtype=int), # # 'z (m)': np.zeros(len(tension), dtype=int), # # 'Frequency (Hz)': df['freq'], # # 'Voltage (V)': df['tension'], # # 'SNR': np.zeros(len(tension), dtype=int)}) # # self.data.reset_index(drop=True, inplace=True) # # self.data = self._model.acoustic_data_table # # # # self.tableModel = TableModel(self.data) # # self.tableView.setModel(self.tableModel) # # self.verticalLayout_groupboxtable.addWidget(self.tableView) # # ------------------------------------ # # self.tableWidget = QTableWidget() # self.tableWidget.setRowCount(10) # self.tableWidget.setColumnCount(10) # # # # print("tablewidget = ", self.tableWidget) # # # # self.tableWidget2 = TableWidget(3, 3) # # print("tablewidget2 = ", self.tableWidget2) # # # for i in range(10): # # for j in range(10): # # item_v = QTableWidgetItem() # # self.tableWidget.setVerticalHeaderItem(i, item_v) # # item_h = QTableWidgetItem() # # self.tableWidget.setHorizontalHeaderItem(j, item_h) # # # Fill table Push Button event # # 1st : connect widgets to controllers = fill table # self.pushbutton_fill_table_acousic.clicked.connect(self.fill_table) # self.on_pushButtonFillTable_clicked # # 2nd : listen for model event signals = table is filled # # self._model.BS_data_updated.connect(self.on_BS_data_updated) # # self.verticalLayout_groupboxtable.addWidget(self.tableWidget) # # self.verticalLayout_groupboxtable.addWidget(self.tableView) # ++++++++++++++++++++++++++++ # | Group Box Display option | # ++++++++++++++++++++++++++++ self.verticalLayout_display_option = QVBoxLayout(self.groupbox_display_option) # --- Push buttons to trigger plot of transect with Backscatter acoustic raw data and SNR --- # self.gridLayout_plot_transect_frequency_profile = QGridLayout() # self.verticalLayout_display_option.addLayout(self.gridLayout_plot_transect_frequency_profile) # # self.horizontalLayout_pushbutton_plot_BS_SNR_data = QHBoxLayout() # # self.verticalLayout_display_option.addLayout(self.horizontalLayout_pushbutton_plot_BS_SNR_data) # # self.pushbutton_plot_transect_with_BS_raw_data = QPushButton() # self.gridLayout_plot_transect_frequency_profile.addWidget(self.pushbutton_plot_transect_with_BS_raw_data, 0, 0, 1, 3) # # self.horizontalLayout_pushbutton_plot_BS_SNR_data.addWidget(self.pushbutton_plot_transect_with_BS_raw_data) # # self.pushbutton_plot_transect_with_BS_raw_data.clicked.connect(self.plot_transect_with_BS_raw_data) # self.label_profile_frequency = QLabel() # self.label_profile_frequency.setText("Profile frequency : ") # self.gridLayout_plot_transect_frequency_profile.addWidget(self.label_profile_frequency, 0, 4, 1, 1) # self.combobox_frequency_profile = QComboBox() # self.gridLayout_plot_transect_frequency_profile.addWidget(self.combobox_frequency_profile, 0, 5, 1, 1) # self.pushbutton_plot_transect_with_SNR_data = QPushButton() # self.horizontalLayout_pushbutton_plot_BS_SNR_data.addWidget(self.pushbutton_plot_transect_with_SNR_data) # self.pushbutton_plot_transect_with_SNR_data.clicked.connect(self.plot_transect_with_SNR_data) # --- Group Box Plot x-axis in time --- self.groupbox_xaxis_time = QGroupBox() # self.groupbox_xaxis_time.setCheckable(True) # self.groupbox_xaxis_time.setChecked(True) # self.groupbox_xaxis_time.clicked.connect(self.transect_xaxis_choice) self.verticalLayout_display_option.addWidget(self.groupbox_xaxis_time) self.gridLayout_groupbox_xaxis_time = QGridLayout(self.groupbox_xaxis_time) self.label_from_time = QLabel() self.label_from_time.setText("From") self.gridLayout_groupbox_xaxis_time.addWidget(self.label_from_time, 0, 0, 1, 1) self.label_tmin = QLabel() self.label_tmin.setText("tmin = ") self.gridLayout_groupbox_xaxis_time.addWidget(self.label_tmin, 0, 1, 1, 1) self.spinbox_tmin = QDoubleSpinBox() self.spinbox_tmin.setRange(0, 9999) self.gridLayout_groupbox_xaxis_time.addWidget(self.spinbox_tmin, 0, 2, 1, 1) # self.spinbox_tmin.valueChanged.connect(self.update_xaxis_transect_with_BS_raw_data) # self.spinbox_tmin.valueChanged.connect(self.update_xaxis_transect_with_SNR_data) self.label_tmin_unit = QLabel() self.label_tmin_unit.setText("sec") self.gridLayout_groupbox_xaxis_time.addWidget(self.label_tmin_unit, 0, 3, 1, 1) self.label_to_time = QLabel() self.label_to_time.setText("to") self.gridLayout_groupbox_xaxis_time.addWidget(self.label_to_time, 0, 4, 1, 1) self.label_tmax = QLabel() self.label_tmax.setText("tmax = ") self.gridLayout_groupbox_xaxis_time.addWidget(self.label_tmax, 0, 5, 1, 1) self.spinbox_tmax = QDoubleSpinBox() self.spinbox_tmax.setRange(0, 9999) self.gridLayout_groupbox_xaxis_time.addWidget(self.spinbox_tmax, 0, 6, 1, 1) # self.spinbox_tmax.valueChanged.connect(self.update_xaxis_transect_with_BS_raw_data) # self.spinbox_tmax.valueChanged.connect(self.update_xaxis_transect_with_SNR_data) self.label_tmax_unit = QLabel() self.label_tmax_unit.setText("sec") self.gridLayout_groupbox_xaxis_time.addWidget(self.label_tmax_unit, 0, 7, 1, 1) self.pushbutton_apply_transect_boundaries_in_time = QPushButton() self.pushbutton_apply_transect_boundaries_in_time.setText("Apply") self.gridLayout_groupbox_xaxis_time.addWidget(self.pushbutton_apply_transect_boundaries_in_time, 0, 7, 1, 1) self.pushbutton_apply_transect_boundaries_in_time.clicked.connect(self.update_xaxis_transect_with_BS_raw_data) # self.pushbutton_apply_transect_boundaries_in_time.clicked.connect(self.update_xaxis_transect_with_SNR_data) self.pushbutton_apply_transect_boundaries_in_time.clicked.connect(self.update_plot_profile) # --- Group Box Plot x-axis in space --- self.groupbox_xaxis_space = QGroupBox() # self.groupbox_xaxis_space.setCheckable(True) # self.groupbox_xaxis_space.setChecked(False) # self.groupbox_xaxis_space.clicked.connect(self.transect_xaxis_choice) self.verticalLayout_display_option.addWidget(self.groupbox_xaxis_space) self.gridLayout_groupbox_xaxis_space = QGridLayout(self.groupbox_xaxis_space) self.label_from_space = QLabel() self.label_from_space.setText("From ") self.gridLayout_groupbox_xaxis_space.addWidget(self.label_from_space, 0, 0, 1, 1) self.label_xmin = QLabel() self.label_xmin.setText("xmin = ") self.gridLayout_groupbox_xaxis_space.addWidget(self.label_xmin, 0, 1, 1, 1) self.spinbox_xmin = QSpinBox() self.spinbox_xmin.setRange(0, 9999) self.gridLayout_groupbox_xaxis_space.addWidget(self.spinbox_xmin, 0, 2, 1, 1) self.label_xmin_m = QLabel() self.label_xmin_m.setText("m") self.gridLayout_groupbox_xaxis_space.addWidget(self.label_xmin_m, 0, 3, 1, 1) self.label_to_space = QLabel() self.label_to_space.setText("to") self.gridLayout_groupbox_xaxis_space.addWidget(self.label_to_space, 0, 4, 1, 1) self.label_xmax = QLabel() self.label_xmax.setText("xmax = ") self.gridLayout_groupbox_xaxis_space.addWidget(self.label_xmax, 0, 5, 1, 1) self.spinbox_xmax = QSpinBox() self.spinbox_xmax.setRange(0, 9999) self.gridLayout_groupbox_xaxis_space.addWidget(self.spinbox_xmax, 0, 6, 1, 1) self.label_xmax_m = QLabel() self.label_xmax_m.setText("m") self.gridLayout_groupbox_xaxis_space.addWidget(self.label_xmax_m, 0, 7, 1, 1) self.pushbutton_apply_transect_boundaries_in_space = QPushButton() self.pushbutton_apply_transect_boundaries_in_space.setText("Apply") self.gridLayout_groupbox_xaxis_space.addWidget(self.pushbutton_apply_transect_boundaries_in_space, 0, 8, 1, 1) self.pushbutton_apply_transect_boundaries_in_space.clicked.connect(self.update_xaxis_transect_with_BS_raw_data) # self.pushbutton_apply_transect_boundaries_in_space.clicked.connect(self.update_xaxis_transect_with_SNR_data) # --- Group Box bathymetry computation algorithm to detect and plot bottom of transect--- self.groupbox_compute_bathymetry = QGroupBox() # # self.groupbox_crosssectionbottom.setTitle("Plot bottom of cross section") # self.groupbox_crosssectionbottom.setCheckable(True) # self.groupbox_crosssectionbottom.setChecked(False) self.verticalLayout_display_option.addWidget(self.groupbox_compute_bathymetry) self.gridlayout_compute_bathymetry = QGridLayout(self.groupbox_compute_bathymetry) self.combobox_freq_choice = QComboBox() # self.combobox_freq_choice.addItems(['', '0.3 MHz', '0.5 Mhz', '1 MHz', '5 MHz']) self.gridlayout_compute_bathymetry.addWidget(self.combobox_freq_choice, 0, 0, 2, 1) self.label_from_bathy = QLabel() self.label_from_bathy.setText("From - ") self.gridlayout_compute_bathymetry.addWidget(self.label_from_bathy, 0, 1, 1, 1) # self.spinbox_depth_min = QSpinBox() self.spinbox_depth_min = QDoubleSpinBox() self.spinbox_depth_min.setRange(0, 9999) self.spinbox_depth_min.setDecimals(2) self.gridlayout_compute_bathymetry.addWidget(self.spinbox_depth_min, 0, 2, 1, 1) self.label_depth_min_unit = QLabel() self.label_depth_min_unit.setText("m") self.gridlayout_compute_bathymetry.addWidget(self.label_depth_min_unit, 0, 3, 1, 1) self.label_to_bathy = QLabel() self.label_to_bathy.setText("to - ") self.gridlayout_compute_bathymetry.addWidget(self.label_to_bathy, 0, 4, 1, 1) # self.spinbox_depth_max = QSpinBox() self.spinbox_depth_max = QDoubleSpinBox() self.spinbox_depth_max.setRange(0, 99999) self.spinbox_depth_max.setDecimals(2) self.gridlayout_compute_bathymetry.addWidget(self.spinbox_depth_max, 0, 5, 1, 1) self.label_depth_max_unit = QLabel() self.label_depth_max_unit.setText("m") self.gridlayout_compute_bathymetry.addWidget(self.label_depth_max_unit, 0, 6, 1, 1) self.label_next_cell = QLabel() self.label_next_cell.setText("Next cell : +/-") self.gridlayout_compute_bathymetry.addWidget(self.label_next_cell, 1, 1, 1, 1) self.doublespinbox_next_cell = QDoubleSpinBox() self.doublespinbox_next_cell.setRange(0, 99999) self.doublespinbox_next_cell.setDecimals(2) self.gridlayout_compute_bathymetry.addWidget(self.doublespinbox_next_cell, 1, 2, 1, 1) self.label_next_cell_unit = QLabel() self.label_next_cell_unit.setText("m") self.gridlayout_compute_bathymetry.addWidget(self.label_next_cell_unit, 1, 3, 1, 1) self.pushbutton_compute_bathymetry_algorithm = QPushButton() self.pushbutton_compute_bathymetry_algorithm.setText("Compute \n&& \nPlot") self.gridlayout_compute_bathymetry.addWidget(self.pushbutton_compute_bathymetry_algorithm, 0, 7, 2, 1) self.pushbutton_compute_bathymetry_algorithm.clicked.connect(self.detect_bottom) # ===================================================== # BOTTOM HORIZONTAL BOX LAYOUT # ===================================================== # +++++++++++++++++++++++++++++++++++++************+++ # | Group Box Backscatter Acoustic Raw Data 2D field | # ++++++++++++++++++++++++++************++++++++++++++ self.verticalLayout_groupbox_transect_2Dplot_raw_BS_data = QVBoxLayout(self.groupbox_transect_2Dplot_raw_BS_data) # self.verticalLayout_groupbox_transect_2Dplot_raw_BS_data.setContentsMargins(0, 0, 0, 0) # self.verticalLayout_groupbox_transect_2Dplot_raw_BS_data.setSpacing(0) self.canvas_BS = None self.scroll_BS = None # self.fig_BS, self.axis_BS = plt.subplots(nrows=4, ncols=1, sharex=True, sharey=False, # layout="constrained") # self.canvas_BS = FigureCanvas(self.fig_BS) # # self.verticalLayout_groupbox_transect_2Dplot_raw_BS_data.removeWidget(self.scroll_BS) # self.scroll_BS = QScrollArea() # self.scroll_BS.setWidget(self.canvas_BS) # self.scroll_BS.setHorizontalScrollBarPolicy(Qt.ScrollBarAlwaysOn) # self.scroll_BS.setVerticalScrollBarPolicy(Qt.ScrollBarAlwaysOn) # # self.scroll_BS.setWidgetResizable(True) # self.scroll_BS.setAlignment(Qt.AlignCenter) # self.verticalLayout_groupbox_transect_2Dplot_raw_BS_data.addWidget(self.scroll_BS) # self.fig_BS, self.axis_BS = plt.subplots(nrows=4, ncols=1, sharex=True, sharey=False, layout="constrained") # self.fig, self.ax = plt.subplots(4, 1) # self.canvas_BS = FigureCanvas(self.fig_BS) # self.canvas_BS = FigureCanvas() # self.plotToolbar_rawdata = NavigationToolBar(self.canvas_rawdata, self) # self.plot_acoustic_raw_data() # self.verticalLayout_plotrawdata.addWidget(self.plotToolbar_rawdata) # self.verticalLayout_groupbox_transect_2Dplot_raw_BS_data.addWidget(self.canvas_BS) # ++++++++++++++++++++++++++++++++++++++++++++ # | Group Box Signal to Noise ratio 2D field | # ++++++++++++++++++++++++++++++++++++++++++++ # self.verticalLayout_groupbox_transect_2Dplot_snr_data = QVBoxLayout(self.groupbox_transect_2Dplot_snr_data) # # self.canvas_SNR = None # self.scroll_SNR = None # # # self.figure, self.axis = plt.subplots(nrows=4, ncols=1, sharex=True, sharey=False, layout="constrained") # # # self.canvas_snrdata = FigureCanvas(self.figure) # # # # self.canvas_snrdata = FigureCanvas() # # # self.plotToolbar_snrdata = NavigationToolBar(self.canvas_snrdata, self) # # # self.plot_snr_data() # # # self.verticalLayout_plotsnrdata.addWidget(self.plotToolbar_snrdata) # # self.verticalLayout_plotsnrdata.addWidget(self.canvas_snrdata) # # # # self.horizontalLayoutBottom.addWidget(self.groupbox_transect_2Dplot_snr_data) # +++++++++++++++++++++++++++++++++++++++++++ # | Group Box Plot profile from BS 2D field | # +++++++++++++++++++++++++++++++++++++++++++ self.verticalLayout_groupbox_plot_profile = QVBoxLayout(self.groupbox_plot_profile) self.groupbox_plot_profile.setTitle("Profiles") self.horizontalLayout_spacerItem_combobox_frequency_profile = QHBoxLayout() self.verticalLayout_groupbox_plot_profile.addLayout(self.horizontalLayout_spacerItem_combobox_frequency_profile) self.spacerItem_frequency_profile = QSpacerItem(50, 10, QSizePolicy.Expanding, QSizePolicy.Minimum) self.horizontalLayout_spacerItem_combobox_frequency_profile.addSpacerItem(self.spacerItem_frequency_profile) self.combobox_frequency_profile = QComboBox() self.horizontalLayout_spacerItem_combobox_frequency_profile.addWidget(self.combobox_frequency_profile) self.canvas_plot_profile = None self.retranslate_acoustic_data_tab() # -------------------- Functions for Acoustic dataTab -------------------- def retranslate_acoustic_data_tab(self): self.groupbox_download.setTitle(_translate("CONSTANT_STRING", cs.DOWNLOAD)) self.groupbox_acoustic_file.setTitle(_translate("CONSTANT_STRING", cs.ACOUSTIC_FILE)) self.label_date_acoustic_file.setText(_translate("CONSTANT_STRING", cs.DATE) + ":") self.label_hour_acoustic_file.setText(_translate("CONSTANT_STRING", cs.HOUR) + ":") # self.groupbox_noise_file.setTitle(_translate("CONSTANT_STRING", cs.NOISE_FILE)) # self.pushbutton_noise_level_with_tail_of_mean_profile.setText(_translate("CONSTANT_STRING", cs.NOISE_LEVEL)) # self.label_date_groupbox_noise_file.setText(_translate("CONSTANT_STRING", cs.DATE) + ":") # self.label_hour_groupbox_noise_file.setText(_translate("CONSTANT_STRING", cs.HOUR) + ":") self.groupbox_gps.setTitle(_translate("CONSTANT_STRING", cs.GPS_FILE)) self.label_date_groupbox_gps_file.setText(_translate("CONSTANT_STRING", cs.DATE) + ":") self.label_hour_groupbox_gps_file.setText(_translate("CONSTANT_STRING", cs.HOUR) + ":") self.label_time_offset.setText(_translate("CONSTANT_STRING", cs.TIME_OFFSET)) self.groupbox_info.setTitle(_translate("CONSTANT_STRING", cs.MEASUREMENTS_INFORMATION)) self.label_profiles.setText(_translate("CONSTANT_STRING", cs.NB_PROFILES) + ":") self.label_profiles.setToolTip(_translate("CONSTANT_STRING", cs.NB_PROFILES_TOOLTIP)) self.label_profiles_per_sec.setText(_translate("CONSTANT_STRING", cs.NB_PROFILES_PER_SEC) + ":") self.label_profiles_per_sec.setToolTip(_translate("CONSTANT_STRING", cs.NB_PROFILES_PER_SEC_TOOLTIP)) self.label_cells.setText(_translate("CONSTANT_STRING", cs.NB_CELLS) + ":") self.label_cells.setToolTip(_translate("CONSTANT_STRING", cs.NB_CELLS_TOOLTIP)) self.label_cell_size.setText(_translate("CONSTANT_STRING", cs.CELL_SIZE) + ":") self.label_cell_size.setToolTip(_translate("CONSTANT_STRING", cs.CELL_SIZE_TOOLTIP)) self.label_pulse_length.setText(_translate("CONSTANT_STRING", cs.PULSE_LENGHT) + ":") self.label_pulse_length.setToolTip(_translate("CONSTANT_STRING", cs.PULSE_LENGHT_TOOLTIP)) self.label_pings_per_sec.setText(_translate("CONSTANT_STRING", cs.NB_PINGS_PER_SEC)) self.label_pings_per_sec.setToolTip(_translate("CONSTANT_STRING", cs.NB_PINGS_PER_SEC_TOOLTIP)) self.label_pings_per_profile.setText(_translate("CONSTANT_STRING", cs.NB_PINGS_PER_PROFILE) + ":") self.label_pings_per_profile.setToolTip(_translate("CONSTANT_STRING", cs.NB_PINGS_PER_PROFILE_TOOLTIP)) self.label_freq.setText(_translate("CONSTANT_STRING", cs.FREQUENCY) + ":") self.label_freq.setToolTip(_translate("CONSTANT_STRING", cs.FREQUENCY_TOOLTIP)) self.label_kt.setText(_translate("CONSTANT_STRING", cs.KT) + ":") self.label_kt.setToolTip(_translate("CONSTANT_STRING", cs.KT_TOOLTIP)) self.label_rx.setText(_translate("CONSTANT_STRING", cs.GAIN_RX) + ":") self.label_rx.setToolTip(_translate("CONSTANT_STRING", cs.GAIN_RX_TOOLTIP)) self.label_tx.setText(_translate("CONSTANT_STRING", cs.GAIN_TX) + ":") self.label_tx.setToolTip(_translate("CONSTANT_STRING", cs.GAIN_TX_TOOLTIP)) # self.groupbox_table.setTitle(_translate("CONSTANT_STRING", cs.TABLE_VALUES)) # self.pushbutton_fill_table.setText(_translate("CONSTANT_STRING", cs.SYNCHRONIZE_AND_FILL_TABLE)) # self.pushbutton_export_table.setText(_translate("CONSTANT_STRING", cs.EXPORT_TABLE)) self.groupbox_display_option.setTitle(_translate("CONSTANT_STRING", cs.DISPLAY_OPTIONS)) # self.pushbutton_plot_transect_with_BS_raw_data.setText(_translate("CONSTANT_STRING", cs.PLOT_TRANSECT)) # self.pushbutton_plot_transect_with_SNR_data.setText(_translate("CONSTANT_STRING", cs.PLOT_SNR)) self.groupbox_xaxis_time.setTitle(_translate("CONSTANT_STRING", cs.PLOT_XAXIS_IN_TIME)) # self.label_tmin.setText(_translate("CONSTANT_STRING", cs.FROM) + " tmin = ") # self.label_tmax.setText(_translate("CONSTANT_STRING", cs.TO) + " tmax = ") # self.pushButton_plot_acoustic_transect_in_time.setText(_translate("CONSTANT_STRING", cs.PLOT_TRANSECT)) self.groupbox_xaxis_space.setTitle(_translate("CONSTANT_STRING", cs.PLOT_XAXIS_IN_SPACE)) # self.label_zmin.setText(_translate("CONSTANT_STRING", cs.FROM) + " zmin = ") # self.label_zmax.setText(_translate("CONSTANT_STRING", cs.TO) + " zmax = ") # self.pushButton_plot_acoustic_transect_in_space.setText(_translate("CONSTANT_STRING", cs.PLOT_TRANSECT)) self.groupbox_compute_bathymetry.setTitle(_translate("CONSTANT_STRING", cs.PLOT_BOTTOM_CROSS_SECTION)) # self.label_depthmin.setText(_translate("CONSTANT_STRING", cs.INITIAL_DEPTH_RANGE) + ":") # self.label_depthmin.setText(_translate("CONSTANT_STRING", cs.FROM)) # self.label_to.setText(_translate("CONSTANT_STRING", cs.TO)) # self.pushButton_bottom_transect.setText(_translate("CONSTANT_STRING", cs.PLOT_BOTTOM)) self.groupbox_transect_2Dplot_raw_BS_data.setTitle(_translate("CONSTANT_STRING", cs.RAW_ACOUSTIC_DATA_2D_FIELD)) # self.groupbox_transect_2Dplot_snr_data.setTitle(_translate("CONSTANT_STRING", cs.SIGNAL_TO_NOISE_RATIO_2D_FIELD)) def onClicked_radiobutton_gps(self): radiobutton = self.sender() if radiobutton.isChecked(): if self.radiobutton_value.isChecked(): self.groupbox_gps_value.setEnabled(True) self.groupbox_gps_file.setDisabled(True) elif self.radiobutton_file.isChecked(): self.groupbox_gps_value.setDisabled(True) self.groupbox_gps_file.setEnabled(True) def ABS_system_choice(self): if self.combobox_ABS_system_choice.currentText() == "Aquascat 1000R": self.groupbox_measurement_information_Aquascat() self.lineEdit_acoustic_file.clear() elif self.combobox_ABS_system_choice.currentText() == "UB-SediFlow": self.groupbox_measurement_information_UBSediFlow() self.lineEdit_acoustic_file.clear() # self.label_date_groupbox_acoustic_file.clear() # self.label_date_groupbox_acoustic_file.setText(_translate("CONSTANT_STRING", cs.DATE) + ": ") # self.label_hour_groupbox_acoustic_file.clear() # self.label_hour_groupbox_acoustic_file.setText(_translate("CONSTANT_STRING", cs.HOUR) + ": ") def groupbox_measurement_information_Aquascat(self): # self.gridLayout_goupbox_info.itemAt(0).widget().deleteLater() # self.label_to_do.hide() self.label_freq.hide() self.label_profiles.show() self.label_profiles_per_sec.show() self.label_cells.show() self.label_cell_size.show() self.label_pulse_length.show() self.label_pings_per_sec.show() self.label_pings_per_profile.show() self.label_freq.show() self.label_kt.show() self.label_rx.show() self.label_tx.show() self.gridLayout_goupbox_info.addWidget(self.label_profiles, 2, 0, 1, 1) self.gridLayout_goupbox_info.addWidget(self.label_profiles_per_sec, 2, 1, 1, 1) self.gridLayout_goupbox_info.addWidget(self.label_cells, 3, 0, 1, 1) self.gridLayout_goupbox_info.addWidget(self.label_cell_size, 3, 1, 1, 1) self.gridLayout_goupbox_info.addWidget(self.label_pulse_length, 4, 0, 1, 1) self.gridLayout_goupbox_info.addWidget(self.label_pings_per_sec, 5, 0, 1, 1) self.gridLayout_goupbox_info.addWidget(self.label_pings_per_profile, 5, 1, 1, 1) self.gridLayout_goupbox_info.addWidget(self.label_freq, 6, 0, 1, 2) self.gridLayout_goupbox_info.addWidget(self.label_kt, 7, 0, 1, 2) self.gridLayout_goupbox_info.addWidget(self.label_rx, 8, 0, 1, 2) self.gridLayout_goupbox_info.addWidget(self.label_tx, 9, 0, 1, 2) def groupbox_measurement_information_UBSediFlow(self): # self.gridLayout_goupbox_info.itemAt(0).widget().deleteLater() self.label_profiles.hide() self.label_profiles_per_sec.hide() self.label_cells.hide() self.label_cell_size.hide() self.label_pulse_length.hide() self.label_pings_per_sec.hide() self.label_pings_per_profile.hide() self.label_freq.hide() self.label_kt.hide() self.label_rx.hide() self.label_tx.hide() # self.label_to_do.show() # # self.gridLayout_goupbox_info.addWidget(self.label_to_do, 0, 0, 1, 1) self.label_freq.show() self.gridLayout_goupbox_info.addWidget(self.label_freq, 0, 0, 1, 1) def temperature_value(self): stg.temperature = (self.spinbox_temperature.value()) print(f"stg.temperature : {stg.temperature}") def clicked_pushbutton_noise_level(self): self.WindowNoiseLevelTailAveragedProfile().show() def open_dialog_box(self): # print(self.combobox_ABS_system_choice.currentText()) # print(self.sender().objectName()) # --- Open dialog box + choice directory and select file --- if self.combobox_ABS_system_choice.currentIndex() == 0: msgBox = QMessageBox() msgBox.setWindowTitle("Download Error") msgBox.setIcon(QMessageBox.Warning) msgBox.setText("Choose ABS system before download acoustic files") msgBox.setStandardButtons(QMessageBox.Ok) msgBox.exec() elif self.combobox_ABS_system_choice.currentIndex() == 1: filename = QFileDialog.getOpenFileName(self, "Open file", "/home/bmoudjed/Documents/3 SSC acoustic meas project/Graphical interface project/Data", "Aquascat file (*.aqa)") dir_name = path.dirname(filename[0]) name = path.basename(filename[0]) # print(dir_name, name) elif self.combobox_ABS_system_choice.currentIndex() == 2: filename = QFileDialog.getOpenFileName(self, "Open file", "", "UBSediFlow file (*.udt)") dir_name = path.dirname(filename[0]) name = path.basename(filename[0]) print(f"dir name : {dir_name} & file name : {name}") # --- Fill lineEdit with path and file names + load acoustic data --- # --- fill date, hour and measurements information + fill frequency combobox for bottom detection --- if self.combobox_ABS_system_choice.currentIndex() != 0: if self.sender().objectName() == "pushbutton_acoustic_file": # if self.sender(): # stg.path_BS_raw_data = dir_name # stg.filename_BS_raw_data = name # self.load_BS_acoustic_raw_data() try: stg.path_BS_raw_data = dir_name stg.filename_BS_raw_data = name self.load_BS_acoustic_raw_data() # print("0 Je suis sur la donnée BS") except ValueError as e: # print("error : ", e) # print("1 Je suis sur la donnée BS") msgBox = QMessageBox() msgBox.setWindowTitle("Download Error") msgBox.setIcon(QMessageBox.Warning) msgBox.setText("Please select a file") msgBox.setStandardButtons(QMessageBox.Ok) msgBox.exec() else: self.lineEdit_acoustic_file.setText(stg.filename_BS_raw_data) self.lineEdit_acoustic_file.setToolTip(stg.path_BS_raw_data) self.label_date_acoustic_file.setText( _translate("CONSTANT_STRING", cs.DATE) + ": " + str(stg.date)) self.label_hour_acoustic_file.setText( _translate("CONSTANT_STRING", cs.HOUR) + ": " + str(stg.hour)) self.fill_measurements_information_groupbox() self.plot_transect_with_BS_raw_data() self.combobox_freq_choice.addItems([f for f in stg.freq_text]) self.combobox_frequency_profile.addItems([f for f in stg.freq_text]) # if self.sender().objectName() == "pushbutton_noise_file": # print("--- 0. Je suis dans le push button noise file ---") # try: # print("--- 1. Je suis dans le push button noise file ---") # stg.path_BS_noise_data = dir_name # stg.filename_BS_noise_data = name # print("dir_name ", stg.path_BS_noise_data) # print("filename ", stg.filename_BS_noise_data) # self.load_noise_data_and_compute_SNR() # print("0 je suis sur la donnée SNR") # except ValueError as e: # print("1 je suis sur la donnée SNR") # msgBox = QMessageBox() # msgBox.setWindowTitle("Download Error") # msgBox.setIcon(QMessageBox.Warning) # msgBox.setText("Please select a file") # msgBox.setStandardButtons(QMessageBox.Ok) # msgBox.exec() # else: # self.lineEdit_noise_file.setText(stg.filename_BS_noise_data) # self.lineEdit_noise_file.setToolTip(stg.path_BS_noise_data) # self.label_date_groupbox_noise_file.setText( # _translate("CONSTANT_STRING", cs.DATE) + ": " + str(stg.date_noise)) # self.label_hour_groupbox_noise_file.setText( # _translate("CONSTANT_STRING", cs.HOUR) + ": " + str(stg.hour_noise)) def load_BS_acoustic_raw_data(self): if self.combobox_ABS_system_choice.currentIndex() == 1: acoustic_data = AcousticDataLoader(stg.path_BS_raw_data + "/" + stg.filename_BS_raw_data) stg.ABS_name = self.combobox_ABS_system_choice.currentText() stg.BS_raw_data = acoustic_data._BS_raw_data stg.BS_raw_data_reshape = acoustic_data.reshape_BS_raw_cross_section() stg.r = acoustic_data._r stg.r_2D = acoustic_data.compute_r_2D() stg.r_reshape = acoustic_data.reshape_r() stg.time = acoustic_data._time stg.time_reshape = acoustic_data.reshape_t() stg.freq = acoustic_data._freq stg.freq_text = acoustic_data._freq_text stg.date = acoustic_data._date stg.hour = acoustic_data._hour stg.nb_profiles = acoustic_data._nb_profiles stg.nb_profiles_per_sec = acoustic_data._nb_profiles_per_sec stg.nb_cells = acoustic_data._nb_cells stg.cell_size = acoustic_data._cell_size stg.pulse_length = acoustic_data._cell_size stg.nb_pings_per_sec = acoustic_data._nb_pings_per_sec stg.nb_pings_averaged_per_profile = acoustic_data._nb_pings_averaged_per_profile stg.kt = acoustic_data._kt stg.gain_rx = acoustic_data._gain_rx stg.gain_tx = acoustic_data._gain_tx elif self.combobox_ABS_system_choice.currentIndex() == 2: acoustic_data = AcousticDataLoaderUBSediFlow(stg.path_BS_raw_data + "/" + stg.filename_BS_raw_data) stg.ABS_name = self.combobox_ABS_system_choice.currentText() stg.date = acoustic_data._date stg.hour = acoustic_data._hour stg.freq = acoustic_data._freq stg.time = acoustic_data._time stg.r = acoustic_data._r stg.r_2D = acoustic_data.compute_r_2D() stg.freq_text = acoustic_data._freq_text stg.BS_raw_data = acoustic_data._BS_raw_data stg.BS_raw_data_reshape = acoustic_data.reshape_BS_raw_cross_section() stg.r_reshape = acoustic_data.reshape_r() stg.time_reshape = acoustic_data.reshape_t() # stg.SNR_data = acoustic_data._SNR_data # stg.snr_reshape = acoustic_data.reshape_SNR_data() # print(f"r = {stg.r}") # def load_noise_data_and_compute_SNR(self): # if self.combobox_ABS_system_choice.currentIndex() == 1: # # noise_data = AcousticDataLoader(stg.path_BS_noise_data + "/" + stg.filename_BS_noise_data) # stg.BS_noise_raw_data = noise_data._BS_raw_data # stg.date_noise = noise_data._date # stg.hour_noise = noise_data._hour # stg.time_snr = stg.time # stg.time_snr_reshape = stg.time_reshape # print(stg.time_snr.shape) # noise = np.zeros(stg.BS_raw_data.shape) # for f, _ in enumerate(noise_data._freq): # noise[f, :, :] = np.mean(stg.BS_noise_raw_data[f, :, :], axis=(0, 1)) # stg.BS_noise_averaged_data = noise # stg.SNR_data = np.divide((stg.BS_raw_data - stg.BS_noise_averaged_data) ** 2, stg.BS_noise_averaged_data ** 2) # stg.SNR_reshape = np.reshape(stg.SNR_data, (stg.r.shape[1] * stg.time.shape[1], stg.freq.shape[0]), order="F") # # elif self.combobox_ABS_system_choice.currentIndex() == 2: # # noise_data = AcousticDataLoaderUBSediFlow(stg.path_BS_noise_data + "/" + stg.filename_BS_noise_data) # stg.BS_noise_raw_data = noise_data._BS_raw_data # print(f"BS noise raw data : {stg.BS_noise_raw_data}") # stg.date_noise = noise_data._date # print(f"date noise : {stg.date_noise}") # stg.hour_noise = noise_data._hour # print(f"hour noise : {stg.hour_noise}") # stg.time_snr = noise_data._time_snr # stg.time_snr_reshape = noise_data.reshape_t_snr() # print(f"BS shape : {stg.BS_noise_raw_data.shape}") # # stg.SNR_data = noise_data._SNR_data # # stg.SNR_reshape = noise_data.reshape_SNR_data() def fill_measurements_information_groupbox(self): if self.combobox_ABS_system_choice.currentIndex() == 1: self.label_profiles.setText( _translate("CONSTANT_STRING", cs.NB_PROFILES) + ": " + str(stg.nb_profiles)) self.label_profiles_per_sec.setText( _translate("CONSTANT_STRING", cs.NB_PROFILES_PER_SEC) + ": " + str(stg.nb_profiles_per_sec) + " Hz") self.label_freq.setText( _translate("CONSTANT_STRING", cs.FREQUENCY) + ": " + ', '.join(stg.freq_text)) self.label_cells.setText( _translate("CONSTANT_STRING", cs.NB_CELLS) + ": " + str(stg.nb_cells)) self.label_cell_size.setText( _translate("CONSTANT_STRING", cs.CELL_SIZE) + ": " + str(100*round(stg.cell_size, 3)) + " cm") self.label_pulse_length.setText( _translate("CONSTANT_STRING", cs.PULSE_LENGHT) + ": " + str(round(stg.pulse_length,6)) + "sec") self.label_pings_per_sec.setText( _translate("CONSTANT_STRING", cs.NB_PINGS_PER_SEC) + ": " + str(stg.nb_pings_per_sec) + " Hz") self.label_pings_per_profile.setText( _translate("CONSTANT_STRING", cs.NB_PINGS_PER_PROFILE) + ": " + str(stg.nb_pings_averaged_per_profile)) self.label_kt.setText( _translate("CONSTANT_STRING", cs.KT) + ": " + ', '.join(map(str, stg.kt))) self.label_rx.setText( _translate("CONSTANT_STRING", cs.GAIN_RX) + ": " + ', '.join(map(str, stg.gain_rx))) self.label_tx.setText( _translate("CONSTANT_STRING", cs.GAIN_TX) + ": " + ', '.join(map(str, stg.gain_tx))) elif self.combobox_ABS_system_choice.currentIndex() == 2: self.label_freq.setText( _translate("CONSTANT_STRING", cs.FREQUENCY) + ": " + ', '.join(stg.freq_text)) def fill_table(self): # if self.combobox_ABS_system_choice.currentIndex() == 2: # if ((self.lineEdit_acoustic_file.text()) and (self.lineEdit_noise_file.text())): # stg.DataFrame_acoustic = pd.DataFrame( # np.concatenate((stg.time_reshape, stg.BS_raw_data_reshape, stg.snr_reshape), axis=1), # columns=list(map(str, ["Time"] + ["BS - " + f for f in stg.freq_text] + # ["SNR - " + f for f in stg.freq_text]))) # self.tableModel = TableModel(stg.DataFrame_acoustic) # self.tableView.setModel(self.tableModel) # elif self.lineEdit_acoustic_file.text(): # stg.DataFrame_acoustic = pd.DataFrame( # np.concatenate((stg.time_reshape, stg.BS_raw_data_reshape), axis=1), # columns=list(map(str, ["Time"] + ["BS - " + f for f in stg.freq_text]))) # self.tableModel = TableModel(stg.DataFrame_acoustic) # self.tableView.setModel(self.tableModel) # else: # msgBox = QMessageBox() # msgBox.setWindowTitle("Fill table Error") # msgBox.setIcon(QMessageBox.Warning) # msgBox.setText("Download files before fill table") # msgBox.setStandardButtons(QMessageBox.Ok) # msgBox.exec() # elif self.combobox_ABS_system_choice.currentIndex() == 1: # if ((self.lineEdit_acoustic_file.text()) and (self.lineEdit_noise_file.text())): # stg.DataFrame_acoustic = pd.DataFrame( # np.concatenate((stg.time_reshape, stg.BS_raw_data_reshape, stg.time_snr_reshape, stg.SNR_reshape), axis=1), # columns=list(map(str, ["Time BS - " + f for f in stg.freq_text] + # ["BS - " + f for f in stg.freq_text] + # ["Time SNR - " + f for f in stg.freq_text] + # ["SNR - " + f for f in stg.freq_text]))) # self.tableModel = TableModel(stg.DataFrame_acoustic) # self.tableView.setModel(self.tableModel) if self.lineEdit_acoustic_file.text(): stg.DataFrame_acoustic = pd.DataFrame( np.concatenate((stg.time_reshape, stg.BS_raw_data_reshape), axis=1), columns=list(map(str, ["Time BS - " + f for f in stg.freq_text] + ["BS - " + f for f in stg.freq_text]))) self.tableModel = TableModel(stg.DataFrame_acoustic) self.tableView.setModel(self.tableModel) else: msgBox = QMessageBox() msgBox.setWindowTitle("Fill table Error") msgBox.setIcon(QMessageBox.Warning) msgBox.setText("Download files before fill table") msgBox.setStandardButtons(QMessageBox.Ok) msgBox.exec() def export_table(self): if self.tableWidget.columnCount() == 10: msgBox = QMessageBox() msgBox.setWindowTitle("Export table Error") msgBox.setIcon(QMessageBox.Warning) msgBox.setText("Fill table before export table") msgBox.setStandardButtons(QMessageBox.Ok) msgBox.exec() else: print("export table") def transect_xaxis_choice(self): if self.groupbox_xaxis_time.isChecked() == True: # self.groupbox_xaxis_time.setDisabled(True) self.groupbox_xaxis_space.setChecked(False) # self.groupbox_xaxis_space.setDisabled(False) elif self.groupbox_xaxis_space.isChecked() == True: self.groupbox_xaxis_time.setChecked(False) # self.groupbox_xaxis_time.setDisabled(False) # self.groupbox_xaxis_space.setDisabled(True) def plot_transect_with_BS_raw_data(self): # --- Condition if table is not filled --- # if not self.lineEdit_acoustic_file.text(): # if not stg.filename_BS_raw_data: # print(stg.filename_BS_raw_data.text()) # msgBox = QMessageBox() # msgBox.setWindowTitle("Plot transect Error") # msgBox.setIcon(QMessageBox.Warning) # msgBox.setText("Load data before plot transect 2D field") # msgBox.setStandardButtons(QMessageBox.Ok) # msgBox.exec() # elif self.tableModel.rowCount(1) == 10: # msgBox = QMessageBox() # msgBox.setWindowTitle("Plot transect Error") # msgBox.setIcon(QMessageBox.Warning) # msgBox.setText("Fill table before plot transect 2D field") # msgBox.setStandardButtons(QMessageBox.Ok) # msgBox.exec() # --- Condition if table is filled and figure is not plotted --- # --- => Then plot transect for each frequency by pressing the button "Plot transect" # elif (self.tableModel.rowCount(1) > 10) and (self.canvas_BS == None): # elif self.canvas_BS == None: # else: # self.fig_BS, self.axis_BS = plt.subplots(nrows=stg.freq.shape[0], ncols=1, sharex=True, sharey=False, # layout="constrained") # # self.verticalLayout_groupbox_transect_2Dplot_raw_BS_data.removeWidget(self.scroll_BS) # self.verticalLayout_groupbox_transect_2Dplot_raw_BS_data.addWidget(self.scroll_BS) self.fig_BS, self.axis_BS = plt.subplots(nrows=stg.freq.shape[0], ncols=1, sharex=True, sharey=False, layout="constrained") self.canvas_BS = FigureCanvas(self.fig_BS) # self.verticalLayout_groupbox_transect_2Dplot_raw_BS_data.addWidget(self.canvas_BS) self.verticalLayout_groupbox_transect_2Dplot_raw_BS_data.removeWidget(self.scroll_BS) self.scroll_BS = QScrollArea() self.scroll_BS.setWidget(self.canvas_BS) self.scroll_BS.setHorizontalScrollBarPolicy(Qt.ScrollBarAlwaysOff) self.scroll_BS.setVerticalScrollBarPolicy(Qt.ScrollBarAlwaysOn) # self.scroll_BS.setWidgetResizable(True) self.scroll_BS.setAlignment(Qt.AlignCenter) self.verticalLayout_groupbox_transect_2Dplot_raw_BS_data.addWidget(self.scroll_BS) self.spinbox_tmin.setValue(np.round(np.min(stg.time[0, :]), 2)) self.spinbox_tmax.setValue(np.round(np.max(stg.time[0, :]), 2)) stg.tmin = np.array([]) stg.tmax = np.array([]) for f, _ in enumerate(stg.freq): val_min = np.nanmin(stg.BS_raw_data[f, :, :]) val_max = np.nanmax(stg.BS_raw_data[f, :, :]) if val_min == 0: val_min = 1e-5 stg.tmin = ( np.append(stg.tmin, np.where(np.abs(np.round(stg.time[f, :], 2) - self.spinbox_tmin.value()) == np.nanmin(np.abs(np.round(stg.time[f, :], 2) - self.spinbox_tmin.value())))[0][0]) ) stg.tmax = ( np.append(stg.tmax, np.where(np.abs(np.round(stg.time[f, :], 2) - self.spinbox_tmax.value()) == np.nanmin(np.abs(np.round(stg.time[f, :], 2) - self.spinbox_tmax.value())))[0][0]) ) # print(f"freq = {f}") print(f"tmin {stg.tmin}") print(f"tmax {stg.tmax}") if self.combobox_ABS_system_choice.currentIndex() == 1: pcm = self.axis_BS[f].pcolormesh(stg.time[f, int(stg.tmin[f]):int(stg.tmax[f])], -stg.r[f, :], stg.BS_raw_data[f, :, int(stg.tmin[f]):int(stg.tmax[f])], cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max)) elif self.combobox_ABS_system_choice.currentIndex() == 2: pcm = self.axis_BS[f].pcolormesh(stg.time[f, int(stg.tmin[f]):int(stg.tmax[f])], -stg.r[f, :], np.log(stg.BS_raw_data[f, :, int(stg.tmin[f]):int(stg.tmax[f])]), cmap='Blues') # --- Plot red solid line on transect to visualize position of plotted profile --- self.axis_BS[self.combobox_frequency_profile.currentIndex()].plot( stg.time[self.combobox_frequency_profile.currentIndex(), 0] * np.ones( stg.r.shape[1]), -stg.r[self.combobox_frequency_profile.currentIndex(), :], color='red', linestyle="solid", linewidth=2) self.axis_BS[f].text(1, .70, stg.freq_text[f], fontsize=14, fontweight='bold', fontname="Ubuntu", c="black", alpha=0.5, horizontalalignment='right', verticalalignment='bottom', transform=self.axis_BS[f].transAxes) self.fig_BS.supxlabel('Time (sec)', fontsize=10) self.fig_BS.supylabel('Depth (m)', fontsize=10) cbar = self.fig_BS.colorbar(pcm, ax=self.axis_BS[:], shrink=1, location='right') cbar.set_label(label='Acoustic backscatter signal (V)', rotation=270, labelpad=10) self.fig_BS.canvas.draw_idle() self.plot_profile() def update_xaxis_transect_with_BS_raw_data(self): # --- Condition if table is filled but transect is not plotted # --- => Error message if spin box values of tmin or tmax is change if self.canvas_BS == None: # if stg.BS_raw_data.size == 0: msgBox = QMessageBox() msgBox.setWindowTitle("Plot transect Error") msgBox.setIcon(QMessageBox.Warning) msgBox.setText("Plot transect before change x-axis value") msgBox.setStandardButtons(QMessageBox.Ok) msgBox.exec() # elif stg.BS_cross_section.size == 0: # # for f, _ in enumerate(stg.freq): # # self.axis_BS[f].cla() # # val_min = np.nanmin(stg.BS_raw_data[f, :, :]) # val_max = np.nanmax(stg.BS_raw_data[f, :, :]) # if val_min == 0: # val_min = 1e-5 # # if self.combobox_ABS_system_choice.currentIndex() == 1: # pcm = self.axis_BS[f].pcolormesh(stg.time[f, int(stg.tmin[f]):int(stg.tmax[f])], # -stg.r[f, :], # stg.BS_raw_data[f, :, int(stg.tmin[f]):int(stg.tmax[f])], # cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max)) # # elif self.combobox_ABS_system_choice.currentIndex() == 2: # pcm = self.axis_BS[f].pcolormesh(stg.time[f, int(stg.tmin[f]):int(stg.tmax[f])], # -stg.r[f, :], # np.log(stg.BS_raw_data[f, :, int(stg.tmin[f]):int(stg.tmax[f])]), # cmap='Blues') # # # --- Plot red solid line on transect to visualize position of plotted profile --- # self.axis_BS[self.combobox_frequency_profile.currentIndex()].plot( # stg.time[self.combobox_frequency_profile.currentIndex(), self.slider.value()] * np.ones(stg.r.shape[1]), # -stg.r[self.combobox_frequency_profile.currentIndex(), :], # color='red', linestyle="solid", linewidth=2) # # self.axis_BS[f].text(1, .70, stg.freq_text[f], # fontsize=14, fontweight='bold', fontname="Ubuntu", c="black", alpha=0.5, # horizontalalignment='right', verticalalignment='bottom', # transform=self.axis_BS[f].transAxes) # # self.fig_BS.supxlabel('Time (sec)', fontsize=10) # self.fig_BS.supylabel('Depth (m)', fontsize=10) # self.fig_BS.canvas.draw_idle() else: self.verticalLayout_groupbox_transect_2Dplot_raw_BS_data.removeWidget(self.scroll_BS) self.verticalLayout_groupbox_transect_2Dplot_raw_BS_data.addWidget(self.scroll_BS) # --- Backscatter acoustic signal is recorded for next tab --- stg.BS_cross_section = np.array([[[]]]) stg.t = np.array([[]]) for f, _ in enumerate(stg.freq): stg.tmin[f] = np.where(np.abs(np.round(stg.time[f, :], 2) - self.spinbox_tmin.value()) == np.nanmin(np.abs(np.round(stg.time[f, :], 2) - self.spinbox_tmin.value())))[0][0] stg.tmax[f] = np.where(np.abs(np.round(stg.time[f, :], 2) - self.spinbox_tmax.value()) == np.nanmin(np.abs(np.round(stg.time[f, :], 2) - self.spinbox_tmax.value())))[0][0] # print("stg.tmin[f] ", stg.tmin[f]) # print("stg.tmax[f] ", stg.tmax[f]) # print("shape of BS_raw_data ", np.array([stg.BS_raw_data[f, :, int(stg.tmin[f]):int(stg.tmax[f])]]).shape) # print("BS_data shape ", stg.BS_cross_section.shape) if stg.BS_cross_section.shape[2] == 0: stg.BS_cross_section = np.array([stg.BS_raw_data[f, :, int(stg.tmin[f]):int(stg.tmax[f])]]) else: stg.BS_cross_section = np.append(stg.BS_cross_section, np.array([stg.BS_raw_data[f, :, int(stg.tmin[f]):int(stg.tmax[f])]]), axis=0) # stg.BS_cross_section = np.stack(np.array([stg.BS_raw_data[f, :, int(stg.tmin[f]):int(stg.tmax[f])]]), axis=0) # stg.BS_cross_section = np.append(stg.BS_cross_section, np.array([stg.BS_raw_data[f, :, int(stg.tmin[f]):int(stg.tmax[f])]]), axis=2) # print("stg.BS_cross_section.shape ", stg.BS_cross_section.shape) # print("stg.BS_cross_section.size ", stg.BS_cross_section.size) # print("stg.time shape ", stg.time.shape) # print("stg.t shape ", stg.t.shape) if stg.t.shape[1] == 0: stg.t = np.array([stg.time[f, int(stg.tmin[f]):int(stg.tmax[f])]]) else: stg.t = np.append(stg.t, np.array([stg.time[f, int(stg.tmin[f]):int(stg.tmax[f])]]), axis=0) # stg.t = np.append(stg.t, np.array([stg.time[f, int(stg.tmin[f]):int(stg.tmax[f])]]), axis=0) print("stg.t shape ", stg.t.shape) # print(f"stg.t : {stg.t}") # stg.r_2D = stg.r_2D[:, np.where(np.round(stg.time, 2) == self.spinbox_tmin.value())[0][0]: # np.where(np.round(stg.time, 2) == self.spinbox_tmax.value())[0][0]] # print("stg.r shape ", stg.r_2D.shape) print("self.combobox_frequency_profile.currentIndex() ", self.combobox_frequency_profile.currentIndex()) print("slider value = ", [ self.slider.value() - 1 if self.slider.value() - 1 <= stg.t.shape[1] - 1 else np.max( stg.t.shape[1] - 1)][0]) print(stg.t[0, [self.slider.value() - 1 if self.slider.value() - 1 <= stg.t.shape[1] - 1 else np.max( stg.t.shape[1] - 1)][0]]) self.axis_BS[f].cla() val_min = np.min(stg.BS_cross_section[f, :, :]) val_max = np.max(stg.BS_cross_section[f, :, :]) if val_min == 0: val_min = 1e-5 # print("stg.t[f, :].shape ", stg.t[f]) # print("stg.r[f, :].shape ", stg.r[f, :]) if self.combobox_ABS_system_choice.currentIndex() == 1: pcm = self.axis_BS[f].pcolormesh(stg.t[f, :], -stg.r[f, :], stg.BS_cross_section[f, :, :], cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max)) elif self.combobox_ABS_system_choice.currentIndex() == 2: pcm = self.axis_BS[f].pcolormesh(stg.t[f, :], -stg.r[f, :], np.log(stg.BS_cross_section[f, :, :]), cmap='Blues') # --- Plot river bottom line --- if stg.r_bottom.size != 0: self.axis_BS[f].plot(stg.t[self.combobox_freq_choice.currentIndex(), :], -stg.r_bottom, color='black', linewidth=1, linestyle="solid") # --- Plot red solid line on transect to visualize position of plotted profile --- self.axis_BS[self.combobox_frequency_profile.currentIndex()].plot( stg.t[0, # self.combobox_frequency_profile.currentIndex(), [self.slider.value() - 1 if self.slider.value() -1 <= stg.t.shape[1]-1 else np.max(stg.t.shape[1]-1)][0]] * np.ones(stg.r.shape[1]), -stg.r[self.combobox_frequency_profile.currentIndex(), :], color='red', linestyle="solid", linewidth=2) self.axis_BS[f].text(1, .70, stg.freq_text[f], fontsize=14, fontweight='bold', fontname="Ubuntu", c="black", alpha=0.5, horizontalalignment='right', verticalalignment='bottom', transform=self.axis_BS[f].transAxes) self.fig_BS.supxlabel('Time (sec)', fontsize=10) self.fig_BS.supylabel('Depth (m)', fontsize=10) self.fig_BS.canvas.draw_idle() def plot_profile(self): # --- Figure to plot profiles --- self.fig_profile, self.axis_profile = plt.subplots(nrows=1, ncols=1, layout="constrained") self.canvas_plot_profile = FigureCanvas(self.fig_profile) self.verticalLayout_groupbox_plot_profile.addWidget(self.canvas_plot_profile) # --- Slider for moving the profile --- self.horizontalLayout_slider = QHBoxLayout() self.verticalLayout_groupbox_plot_profile.addLayout(self.horizontalLayout_slider) self.pushbutton_slider_left = QPushButton() self.pushbutton_slider_left.setIcon(self.icon_triangle_left) self.horizontalLayout_slider.addWidget(self.pushbutton_slider_left) self.pushbutton_slider_left.clicked.connect(self.slide_profile_number_to_left) self.pushbutton_slider_right = QPushButton() self.pushbutton_slider_right.setIcon(self.icon_triangle_right) self.horizontalLayout_slider.addWidget(self.pushbutton_slider_right) self.pushbutton_slider_right.clicked.connect(self.slide_profile_number_to_right) self.lineEdit_slider = QLineEdit() self.lineEdit_slider.setText("1") self.lineEdit_slider.setFixedWidth(50) self.horizontalLayout_slider.addWidget(self.lineEdit_slider) self.lineEdit_slider.returnPressed.connect(self.profile_number_on_lineEdit) self.slider = QSlider() self.horizontalLayout_slider.addWidget(self.slider, 9) self.slider.setOrientation(Qt.Horizontal) self.slider.setCursor(Qt.OpenHandCursor) self.slider.setMinimum(1) self.slider.setMaximum(stg.BS_raw_data.shape[2]) self.slider.setTickInterval(1) self.slider.setValue(1) self.slider.valueChanged.connect(self.update_lineEdit_by_moving_slider) # self.slider.valueChanged.connect(self.update_plot_profile_position_on_transect) self.slider.valueChanged.connect(self.update_plot_profile) self.slider.valueChanged.connect(self.update_xaxis_transect_with_BS_raw_data) self.combobox_frequency_profile.currentIndexChanged.connect(self.update_xaxis_transect_with_BS_raw_data) self.combobox_frequency_profile.currentIndexChanged.connect(self.update_plot_profile) # for f, _ in enumerate(stg.freq[0]): self.axis_profile.cla() self.axis_profile.plot(stg.BS_raw_data[ self.combobox_frequency_profile.currentIndex(), :, self.slider.value() - 1], -stg.r[self.combobox_frequency_profile.currentIndex(), :], linestyle='solid', color='k', linewidth=1) self.axis_profile.text(.95, .05, stg.freq_text[self.combobox_frequency_profile.currentIndex()], fontsize=10, fontweight='bold', fontname="Ubuntu", fontstyle="normal", c="black", alpha=0.2, horizontalalignment='right', verticalalignment='bottom', transform=self.axis_profile.transAxes) self.fig_profile.supxlabel("Acoustic Backscatter Signal (V)") self.fig_profile.supylabel("Depth (m)") def slide_profile_number_to_right(self): self.slider.setValue(int(self.slider.value()) + 1) self.lineEdit_slider.setText(str(self.slider.value())) def slide_profile_number_to_left(self): self.slider.setValue(int(self.slider.value()) - 1) self.lineEdit_slider.setText(str(self.slider.value())) def profile_number_on_lineEdit(self): self.slider.setValue(int(self.lineEdit_slider.text())) def update_lineEdit_by_moving_slider(self): self.lineEdit_slider.setText(str(self.slider.value())) def update_plot_profile(self): if stg.BS_cross_section.size == 0: self.axis_profile.cla() self.axis_profile.plot(stg.BS_raw_data[ self.combobox_frequency_profile.currentIndex(), :, self.slider.value() - 1], -stg.r[self.combobox_frequency_profile.currentIndex(), :], linestyle='solid', color='k', linewidth=1) self.axis_profile.text(.95, .05, stg.freq_text[self.combobox_frequency_profile.currentIndex()], fontsize=10, fontweight='bold', fontname="Ubuntu", fontstyle="normal", c="black", alpha=0.2, horizontalalignment='right', verticalalignment='bottom', transform=self.axis_profile.transAxes) else: self.slider.setMaximum(stg.t.shape[1]) slider_value = [self.slider.value() - 1 if self.slider.value() -1 <= stg.t.shape[1]-1 else np.max(stg.t.shape[1]-1)][0] self.axis_profile.cla() # --- Profile plot --- self.axis_profile.plot(stg.BS_cross_section[self.combobox_frequency_profile.currentIndex(), :, slider_value], -stg.r[self.combobox_frequency_profile.currentIndex(), :], linestyle='solid', color='k', linewidth=1) # --- Plot upper limit line --- # self.axis_profile.plot([0, # stg.BS_cross_section[self.combobox_frequency_profile.currentIndex(), # stg.ind_bottom[slider_value], # slider_value]], # -stg. # ) # --- Plot lower limit line --- # --- Write frequency on graph --- self.axis_profile.text(.95, .90, stg.freq_text[self.combobox_frequency_profile.currentIndex()], fontsize=14, fontweight='bold', fontname="Ubuntu", fontstyle="normal", c="black", alpha=0.2, horizontalalignment='right', verticalalignment='bottom', transform=self.axis_profile.transAxes) # --- Plot bottom line --- if stg.r_bottom.size != 0: self.axis_profile.plot([0, np.nanmax(stg.BS_cross_section[self.combobox_frequency_profile.currentIndex(), :, slider_value])], -stg.r[self.combobox_frequency_profile.currentIndex(), stg.ind_bottom[slider_value]]*np.ones(2), linestyle='solid', color='r', linewidth=1) position_x = (stg.r[self.combobox_frequency_profile.currentIndex(), stg.ind_bottom[slider_value]] / np.nanmax(stg.r[self.combobox_frequency_profile.currentIndex(), :])) self.axis_profile.text(.95, 1-position_x + 0.05, "River bed", fontsize=10, fontweight='normal', fontname="Times New Roman", fontstyle="italic", c="red", alpha=0.2, horizontalalignment='right', verticalalignment='bottom', transform=self.axis_profile.transAxes) self.fig_profile.supxlabel("Acoustic Backscatter Signal (V)") self.fig_profile.supylabel("Depth (m)") self.fig_profile.canvas.draw_idle() # def plot_transect_with_SNR_data(self): # if not self.lineEdit_noise_file.text(): # msgBox = QMessageBox() # msgBox.setWindowTitle("Plot transect Error") # msgBox.setIcon(QMessageBox.Warning) # msgBox.setText("Load data before plot SNR 2D field") # msgBox.setStandardButtons(QMessageBox.Ok) # msgBox.exec() # elif self.tableModel.rowCount(1) == 10: # msgBox = QMessageBox() # msgBox.setWindowTitle("Plot transect Error") # msgBox.setIcon(QMessageBox.Warning) # msgBox.setText("Fill table before plot SNR 2D field") # msgBox.setStandardButtons(QMessageBox.Ok) # msgBox.exec() # elif self.canvas_BS == None: # msgBox = QMessageBox() # msgBox.setWindowTitle("Plot transect Error") # msgBox.setIcon(QMessageBox.Warning) # msgBox.setText("Plot backscatter acoustic raw data 2D field before plot SNR 2D field") # msgBox.setStandardButtons(QMessageBox.Ok) # msgBox.exec() # elif (self.lineEdit_noise_file.text()) and (self.tableModel.rowCount(1) > 11): # # self.fig_SNR, self.axis_SNR = plt.subplots(nrows=stg.freq.shape[0] , ncols=1, # sharex=True, sharey=False, layout="constrained") # self.canvas_SNR = FigureCanvas(self.fig_SNR) # self.verticalLayout_groupbox_transect_2Dplot_snr_data.addWidget(self.canvas_SNR) # # self.verticalLayout_groupbox_transect_2Dplot_snr_data.removeWidget(self.scroll_SNR) # self.scroll_SNR = QScrollArea() # self.scroll_SNR.setWidget(self.canvas_SNR) # self.scroll_SNR.setHorizontalScrollBarPolicy(Qt.ScrollBarAlwaysOff) # self.scroll_SNR.setVerticalScrollBarPolicy(Qt.ScrollBarAlwaysOn) # self.scroll_SNR.setAlignment(Qt.AlignCenter) # self.verticalLayout_groupbox_transect_2Dplot_snr_data.addWidget(self.scroll_SNR) # # # self.spinbox_tmin.setValue(np.min(noise_data._time_snr)) # # self.spinbox_tmax.setValue(np.round(np.max(noise_data._time_snr), 2)) # # # if self.combobox_ABS_system_choice.currentIndex() == 1: # # # # x, y = np.meshgrid( # # stg.time[np.where(np.round(stg.time, 2) == self.spinbox_tmin.value())[0][0]: # # np.where(np.round(stg.time, 2) == self.spinbox_tmax.value())[0][0]], # # stg.r) # # # # for f in range(stg.freq.shape[0]): # # # # val_min = np.min(stg.snr[:, f, :]) # # val_max = np.max(stg.snr[:, f, :]) # # if val_min == 0: # # val_min = 1e-5 # # if val_max > 1000: # # levels = np.array([00.1, 1, 2, 10, 100, 1000, 1e6]) # # else: # # levels = np.array([00.1, 1, 2, 10, 100, val_max]) # # bounds = [00.1, 1, 2, 10, 100, 1000, val_max, val_max * 1.2] # # norm = BoundaryNorm(boundaries=bounds, ncolors=300) # # # # cf = (self.axis_SNR[f]. # # contourf(x, -y, # # stg.snr[:, f, # # np.where(np.round(stg.snr, 2) == self.spinbox_tmin.value())[0][0]: # # np.where(np.round(stg.time, 2) == self.spinbox_tmax.value())[0][0]], # # levels, cmap='gist_rainbow', norm=norm)) # # # # self.axis_SNR[f].text(1, .70, stg.freq_text[f], # # fontsize=14, fontweight='bold', fontname="Ubuntu", c="black", alpha=0.5, # # horizontalalignment='right', verticalalignment='bottom', # # transform=self.axis_SNR[f].transAxes) # # # # self.fig_SNR.supxlabel('Time (sec)', fontsize=10) # # self.fig_SNR.supylabel('Depth (m)', fontsize=10) # # cbar = self.fig_SNR.colorbar(cf, ax=self.axis_SNR[:], shrink=1, location='right') # # cbar.set_label(label='Signal to Noise Ratio', rotation=270, labelpad=10) # # cbar.set_ticklabels(['0', '1', '2', '10', '100', r'10$^3$', r'10$^6$']) # # self.fig_SNR.canvas.draw_idle() # # # elif self.combobox_ABS_system_choice.currentIndex() == 2: # # x = np.array([[[]]]) # y = np.array([[[]]]) # print(f"x : {x.shape}, y : {y.shape}") # for f, freq in enumerate(stg.freq): # # if x.shape[2] == 0: # x, y = np.meshgrid(stg.time_snr[f, :], stg.r[f, :]) # x = np.array([x]) # y = np.array([y]) # print(f"x : {x.shape}, y : {y.shape}") # else: # x0, y0 = np.meshgrid(stg.time_snr[f, :], stg.r[f, :]) # x = np.append(x, np.array([x0]), axis=0) # y = np.append(y, np.array([y0]), axis=0) # print(f"x : {x.shape}, y : {y.shape}") # # val_min = np.nanmin(abs(stg.SNR_data[f, :, :])) # # print(f"val_min = {val_min}") # val_max = np.nanmax(abs(stg.SNR_data[f, :, :])) # # print(f"val_max = {val_max}") # if int(val_min) == 0: # val_min = 1e-5 # if int(val_max) < 1000: # levels = np.array([00.1, 1, 2, 10, 100, 1000, 1e6]) # bounds = [00.1, 1, 2, 10, 100, 1000, 1e6, 1e6 * 1.2] # else: # levels = np.array([00.1, 1, 2, 10, 100, val_max]) # bounds = [00.1, 1, 2, 10, 100, 1000, val_max, val_max * 1.2] # norm = BoundaryNorm(boundaries=bounds, ncolors=300) # # # print(f"levels = {levels}") # # print(f"norm = {norm.boundaries}") # if self.combobox_ABS_system_choice.currentIndex() == 1: # # cf = self.axis_SNR[f].contourf(x[f, :, :], -y[f, :, :], # stg.SNR_data[f, :, :], levels, cmap='gist_rainbow', norm=norm) # # elif self.combobox_ABS_system_choice.currentIndex() == 2: # # cf = self.axis_SNR[f].contourf(x[f, :, :], -y[f, :, :], stg.SNR_data[f, :, :])#, levels, cmap='gist_rainbow', norm=norm) # # self.axis_SNR[f].text(1, .70, stg.freq_text[f], # fontsize=14, fontweight='bold', fontname="Ubuntu", c="black", alpha=0.5, # horizontalalignment='right', verticalalignment='bottom', # transform=self.axis_SNR[f].transAxes) # # self.fig_SNR.supxlabel('Time (sec)', fontsize=10) # self.fig_SNR.supylabel('Depth (m)', fontsize=10) # cbar = self.fig_SNR.colorbar(cf, ax=self.axis_SNR[:], shrink=1, location='right') # cbar.set_label(label='Signal to Noise Ratio', rotation=270, labelpad=10) # self.fig_SNR.canvas.draw_idle() # def update_xaxis_transect_with_SNR_data(self): # # # if self.canvas_SNR == None: # # msgBox = QMessageBox() # # msgBox.setWindowTitle("Plot transect Error") # # msgBox.setIcon(QMessageBox.Warning) # # msgBox.setText("Plot transect before change x-axis value") # # msgBox.setStandardButtons(QMessageBox.Ok) # # msgBox.exec() # # if ((self.canvas_BS != None) and (self.canvas_SNR != None)): # # # --- Backscatter noise signal is recorded for next tab --- # # stg.tmin_snr = np.array([]) # stg.tmax_snr = np.array([]) # # stg.SNR_cross_section = np.array([[[]]]) # stg.t_snr = np.array([[]]) # # x = np.array([[[]]]) # y = np.array([[[]]]) # # print(f"x : {x.shape}, y : {y.shape}") # for f, _ in enumerate(stg.freq): # # if x.shape[2] == 0: # x, y = np.meshgrid(stg.time_snr[f, :], stg.r[f, :]) # x = np.array([x]) # y = np.array([y]) # # print(f"x : {x.shape}, y : {y.shape}") # else: # x0, y0 = np.meshgrid(stg.time_snr[f, :], stg.r[f, :]) # x = np.append(x, np.array([x0]), axis=0) # y = np.append(y, np.array([y0]), axis=0) # # print(f"x : {x.shape}, y : {y.shape}") # # # print(np.abs(np.round(stg.time_snr[f, :], 2) - self.spinbox_tmin.value())) # # print(np.where(np.abs(np.round(stg.time_snr[f, :], 2) - self.spinbox_tmin.value()) == # # np.nanmin(np.abs(np.round(stg.time_snr[f, :], 2) - self.spinbox_tmin.value())))[0][0]) # # stg.tmin_snr = ( # np.append(stg.tmin_snr, # np.where(np.abs(np.round(stg.time_snr[f, :], 2) - self.spinbox_tmin.value()) == # np.nanmin(np.abs(np.round(stg.time_snr[f, :], 2) - self.spinbox_tmin.value())))[0][ # 0]) # ) # # stg.tmax_snr = ( # np.append(stg.tmax_snr, # np.where(np.abs(np.round(stg.time_snr[f, :], 2) - self.spinbox_tmax.value()) == # np.nanmin(np.abs(np.round(stg.time_snr[f, :], 2) - self.spinbox_tmax.value())))[0][ # 0]) # ) # # # print("stg.tmin[f] ", stg.tmin_snr[f]) # # print("stg.tmax[f] ", stg.tmax_snr[f]) # # if stg.SNR_cross_section.shape[2] == 0: # stg.SNR_cross_section = np.array([stg.SNR_data[f, :, int(stg.tmin_snr[f]):int(stg.tmax_snr[f])]]) # else: # stg.SNR_cross_section = np.append(stg.SNR_cross_section, # np.array([stg.SNR_data[f, :, int(stg.tmin_snr[f]):int(stg.tmax_snr[f])]]), # axis=0) # # # stg.BS_cross_section = np.stack(np.array([stg.BS_raw_data[f, :, int(stg.tmin[f]):int(stg.tmax[f])]]), axis=0) # # stg.BS_cross_section = np.append(stg.BS_cross_section, np.array([stg.BS_raw_data[f, :, int(stg.tmin[f]):int(stg.tmax[f])]]), axis=2) # # if stg.t_snr.shape[1] == 0: # stg.t_snr = np.array([stg.time_snr[f, int(stg.tmin_snr[f]):int(stg.tmax_snr[f])]]) # else: # stg.t_snr = np.append(stg.t_snr, np.array([stg.time_snr[f, int(stg.tmin_snr[f]):int(stg.tmax_snr[f])]]), axis=0) # # stg.t = np.append(stg.t, np.array([stg.time[f, int(stg.tmin[f]):int(stg.tmax[f])]]), axis=0) # # print("stg.t shape ", stg.t_snr.shape) # # self.axis_SNR[f].cla() # # # if self.combobox_ABS_system_choice.currentIndex() == 1: # # # # val_min = np.nanmin(stg.SNR_data[f, :, :]) # # val_max = np.nanmax(stg.snr[f, :, :]) # # if val_min == 0: # # val_min = 1e-5 # # if val_max < 1000: # # levels = np.array([00.1, 1, 2, 10, 100, 1000, 1e6]) # # else: # # levels = np.array([00.1, 1, 2, 10, 100, val_max]) # # # # bounds = [00.1, 1, 2, 10, 100, 1000, val_max, val_max * 1.2] # # norm = BoundaryNorm(boundaries=bounds, ncolors=300) # # # # cf = self.axis_SNR[f].contourf(x, -y, # # stg.snr[:, f, # # np.where(np.round(stg.time, 2) == self.spinbox_tmin.value())[0][0]: # # np.where(np.round(stg.time, 2) == self.spinbox_tmax.value())[0][0]], # # levels, cmap='gist_rainbow', norm=norm) # # # # self.axis_SNR[f].text(1, .70, stg.freq_text[f], # # fontsize=14, fontweight='bold', fontname="Ubuntu", c="black", alpha=0.5, # # horizontalalignment='right', verticalalignment='bottom', # # transform=self.axis_SNR[f].transAxes) # # # # elif self.combobox_ABS_system_choice.currentIndex() == 2: # # val_min = np.nanmin(abs(stg.SNR_data[f, :, :])) # # print(f"val_min = {val_min}") # val_max = np.nanmax(abs(stg.SNR_data[f, :, :])) # # print(f"val_max = {val_max}") # if int(val_min) == 0: # val_min = 1e-5 # if int(val_max) < 1000: # levels = np.array([00.1, 1, 2, 10, 100, 1000, 1e6]) # bounds = [00.1, 1, 2, 10, 100, 1000, 1e6, 1e6 * 1.2] # else: # levels = np.array([00.1, 1, 2, 10, 100, val_max]) # bounds = [00.1, 1, 2, 10, 100, 1000, val_max, val_max * 1.2] # norm = BoundaryNorm(boundaries=bounds, ncolors=300) # # # print(f"levels = {levels}") # # print(f"norm = {norm.boundaries}") # # if self.combobox_ABS_system_choice.currentIndex() == 1: # # cf = self.axis_SNR[f].contourf(x[f, :, int(stg.tmin_snr[f]):int(stg.tmax_snr[f])], # -y[f, :, int(stg.tmin_snr[f]):int(stg.tmax_snr[f])], # stg.SNR_data[f, :, int(stg.tmin_snr[f]):int(stg.tmax_snr[f])], # levels, cmap='gist_rainbow', norm=norm) # # elif self.combobox_ABS_system_choice.currentIndex() == 2: # # cf = self.axis_SNR[f].contourf(x[f, :, int(stg.tmin_snr[f]):int(stg.tmax_snr[f])], # -y[f, :, int(stg.tmin_snr[f]):int(stg.tmax_snr[f])], # stg.SNR_data[f, :, int(stg.tmin_snr[f]):int(stg.tmax_snr[f])]) # , levels, cmap='gist_rainbow', norm=norm) # # self.axis_SNR[f].text(1, .70, stg.freq_text[f], # fontsize=14, fontweight='bold', fontname="Ubuntu", c="black", alpha=0.5, # horizontalalignment='right', verticalalignment='bottom', # transform=self.axis_SNR[f].transAxes) # # self.fig_SNR.supxlabel('Distance from left bank (m)', fontsize=10) # self.fig_SNR.supylabel('Depth (m)', fontsize=10) # self.fig_SNR.canvas.draw_idle() def detect_bottom(self): if self.lineEdit_acoustic_file.text() == "": msgBox = QMessageBox() msgBox.setWindowTitle("Detect bottom Error") msgBox.setIcon(QMessageBox.Warning) msgBox.setText("Load data before compute bathymety algorithm") msgBox.setStandardButtons(QMessageBox.Ok) msgBox.exec() # elif self.tableModel.rowCount(1) == 10: # msgBox = QMessageBox() # msgBox.setWindowTitle("Detect bottom Error") # msgBox.setIcon(QMessageBox.Warning) # msgBox.setText("Fill table before compute bathymety algorithm") # msgBox.setStandardButtons(QMessageBox.Ok) # msgBox.exec() elif self.canvas_BS == None: msgBox = QMessageBox() msgBox.setWindowTitle("Detect bottom Error") msgBox.setIcon(QMessageBox.Warning) msgBox.setText("Plot transect before compute bathymety algorithm") msgBox.setStandardButtons(QMessageBox.Ok) msgBox.exec() # elif self.canvas_SNR == None: # msgBox = QMessageBox() # msgBox.setWindowTitle("Detect bottom Error") # msgBox.setIcon(QMessageBox.Warning) # msgBox.setText("Plot transect before compute bathymety algorithm") # msgBox.setStandardButtons(QMessageBox.Ok) # msgBox.exec() elif self.canvas_BS != None: # else: # --- Record frequency choose for bottom detection --- stg.freq_bottom_detection = self.combobox_freq_choice.currentIndex() # Selecting the range in which we look for the bottom reflection rmin = np.float32(self.spinbox_depth_min.text().replace(",", ".")) rmax = np.float32(self.spinbox_depth_max.text().replace(",", ".")) # print(f"rmin = {rmin}") # print(f"rmax = {rmax}") # empty result arrays # r_bottom = np.zeros(stg.nb_profiles) # val_bottom = np.zeros(stg.nb_profiles) r_bottom = np.zeros(stg.t.shape[1]) val_bottom = np.zeros(stg.t.shape[1]) r_bottom_ind = [] # print(f"r_bottom shape with zeros : {r_bottom.shape}") BS_smooth = deepcopy(stg.BS_raw_data[self.combobox_freq_choice.currentIndex(), :, :]) # print(f"BS_smooth shape : {BS_smooth.shape}") for k in range(stg.time.shape[1]): BS_smooth[:, k] = savgol_filter(BS_smooth[:, k], 10, 2) # fig1, ax1 = plt.subplots(nrows=1, ncols=1, layout="constrained") # pcm1 = ax1.pcolormesh(stg.time[0, :], -stg.r[0, :], np.log(BS_smooth[:, :]), cmap='Blues') # fig1.colorbar(pcm1, ax=ax1, shrink=1, location='right') # plt.show() # ----------- Detecting the bottom ------------- # for d in range(stg.nb_profiles): for d in range(stg.t.shape[1]): # Index of the range where we look for the peak # print(f"self.combobox_freq_choice.currentIndex() : {self.combobox_freq_choice.currentIndex()}") # print(f"r = {stg.r}") ind_min = np.where(stg.r[int(self.combobox_freq_choice.currentIndex()), :] >= rmin)[0][0] ind_max = np.where(stg.r[int(self.combobox_freq_choice.currentIndex()), :] <= rmax)[0][-1] # print(f"ind_min : {ind_min}") # print(f"ind_max : {ind_max}") # Getting the peak try: # val_bottom[d] = np.nanmax((stg.BS_raw_data[self.combobox_freq_choice.currentIndex(), ind_min:ind_max, d])) val_bottom[d] = np.nanmax(BS_smooth[ind_min:ind_max, d]) # print('---------------------------------------------------') # print(f"d = {d}") # print("stg.BS_raw_data[ind_min:ind_max] : ", stg.BS_raw_data[self.combobox_freq_choice.currentIndex(), ind_min:ind_max, d]) except ValueError as e: msgBox = QMessageBox() msgBox.setWindowTitle("Detect bottom Error") msgBox.setIcon(QMessageBox.Warning) msgBox.setText(f"1/ {e} : maximum value of section bottom is not found. \n " f"Please change parameter of algorithm") msgBox.setStandardButtons(QMessageBox.Ok) msgBox_return = msgBox.exec() if msgBox_return == msgBox.Ok: break #msgBox.close() else: # Getting the range cell of the peak # ind_bottom = np.where((stg.BS_raw_data[self.combobox_freq_choice.currentIndex(), ind_min:ind_max, d]) # == val_bottom[d])[0][0] ind_bottom = np.where((BS_smooth[ind_min:ind_max, d]) == val_bottom[d])[0][0] np.append(stg.ind_bottom, ind_bottom) r_bottom[d] = stg.r[self.combobox_freq_choice.currentIndex(), ind_bottom + ind_min] r_bottom_ind.append(ind_bottom + ind_min) # Updating the range where we will look for the peak (in the next cell) # rmin = r_bottom[d] - locale.atof(self.doublespinbox_next_cell.text()) # rmax = r_bottom[d] + locale.atof(self.doublespinbox_next_cell.text()) rmin = r_bottom[d] - np.float32(self.doublespinbox_next_cell.text().replace(",", ".")) rmax = r_bottom[d] + np.float32(self.doublespinbox_next_cell.text().replace(",", ".")) # --- Plot vertical profile for bottom detection --- # n = 60 # t0 = 200 # t1 = np.where(np.abs(stg.time[0, :] - t0) == np.nanmin(np.abs(stg.time[0, :] - t0)))[0][0] # # print(np.abs(self._time[0, :] - 200)) # # print(f"x0 = {x0}") # r1 = 98 # r2 = 150 # fig2, ax2 = plt.subplots(nrows=1, ncols=n, layout="constrained") # for i in range(n): # ax2[i].plot(stg.BS_raw_data[self.combobox_freq_choice.currentIndex(), r1:r2, t1 + i], # -stg.r[0, r1:r2], 'b') # ax2[i].plot(BS_smooth[r1:r2, t1 + i], -stg.r[0, r1:r2], 'r') # ax2[i].scatter(val_bottom[i], -r_bottom[i], marker="o", fc="black", s=12) # ax2[i].set_xticks([]) # if i != 0: # ax2[i].set_yticks([]) # plt.show() # print(f"r_bootom shape : {r_bottom.shape}") BS_section_bottom = np.zeros((stg.r.shape[1], stg.t.shape[1])) for i in range(BS_section_bottom.shape[0]): try: # print(f"r_bottom_ind : {r_bottom_ind}") BS_section_bottom[r_bottom_ind[i]][i] = 1 except IndexError as e: msgBox = QMessageBox() msgBox.setWindowTitle("Detect bottom Error") msgBox.setIcon(QMessageBox.Warning) msgBox.setText(f"2/ {e} : maximum value of section bottom is not found. \n " f"Please change parameter of algorithm") msgBox.setStandardButtons(QMessageBox.Ok) msgBox_return = msgBox.exec() if msgBox_return == msgBox.Ok: break # msgBox.close() if BS_section_bottom.sum() > 2: # --- Record r_bottom for other tabs --- # stg.r_bottom = r_bottom[np.where(np.round(stg.time, 2) == self.spinbox_tmin.value())[0][0]: # np.where(np.round(stg.time, 2) == self.spinbox_tmax.value())[0][0]] # stg.val_bottom = val_bottom[np.where(np.round(stg.time, 2) == self.spinbox_tmin.value())[0][0]: # np.where(np.round(stg.time, 2) == self.spinbox_tmax.value())[0][0]] stg.r_bottom = r_bottom#[int(stg.tmin[self.combobox_freq_choice.currentIndex()]): # int(stg.tmax[self.combobox_freq_choice.currentIndex()])] stg.val_bottom = val_bottom#[int(stg.tmin[self.combobox_freq_choice.currentIndex()]): # int(stg.tmax[self.combobox_freq_choice.currentIndex()])] stg.ind_bottom = r_bottom_ind print("stg.ind_bottom : ", stg.ind_bottom) print("stg.val_bottom : ", stg.val_bottom) stg.BS_stream_bed = deepcopy(stg.BS_cross_section) for f, _ in enumerate(stg.freq): for k, _ in enumerate(stg.r_bottom): # print(k, np.where(stg.r >= stg.r_bottom[k])[0]) stg.BS_stream_bed[ f, np.where(stg.r[self.combobox_freq_choice.currentIndex(), :] >= stg.r_bottom[k])[ 0], k] = np.nan # --- Plot transect BS with bathymetry --- for f, _ in enumerate(stg.freq): self.axis_BS[f].cla() val_min = np.min(stg.BS_raw_data[f, :, :]) val_max = np.max(stg.BS_raw_data[f, :, :]) if val_min == 0: val_min = 1e-5 # pcm = self.axis_BS[f].pcolormesh( # stg.time[np.where(np.round(stg.time, 2) == self.spinbox_tmin.value())[0][0]: # np.where(np.round(stg.time, 2) == self.spinbox_tmax.value())[0][0]], # -stg.r, # (stg.BS_raw_data[:, f, # np.where(np.round(stg.time, 2) == self.spinbox_tmin.value())[0][0]: # np.where(np.round(stg.time, 2) == self.spinbox_tmax.value())[0][0]]), # cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max)) if self.combobox_ABS_system_choice.currentIndex() == 1: pcm = self.axis_BS[f].pcolormesh(stg.t[f, :], -stg.r[f, :], stg.BS_cross_section[f, :, :], cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max)) elif self.combobox_ABS_system_choice.currentIndex() == 2: pcm = self.axis_BS[f].pcolormesh(stg.t[f, :], -stg.r[f, :], np.log(stg.BS_cross_section[f, :, :]), cmap='Blues') # self.axis_BS[f].plot( # stg.time[np.where(np.round(stg.time, 2) == self.spinbox_tmin.value())[0][0]: # np.where(np.round(stg.time, 2) == self.spinbox_tmax.value())[0][0]], # - r_bottom[np.where(np.round(stg.time, 2) == self.spinbox_tmin.value())[0][0]: # np.where(np.round(stg.time, 2) == self.spinbox_tmax.value())[0][0]], # color='black', linewidth=1, linestyle="solid") # print("stg.t[self.combobox_freq_choice.currentIndex(), :] : ", stg.t[self.combobox_freq_choice.currentIndex(), :].shape) # print("-stg.r_bottom : ", stg.r_bottom.shape) self.axis_BS[f].plot(stg.t[self.combobox_freq_choice.currentIndex(), :], -stg.r_bottom, color='black', linewidth=1, linestyle="solid") self.axis_BS[f].text(1, .70, stg.freq_text[f], fontsize=14, fontweight='bold', fontname="Ubuntu", c="black", alpha=0.5, horizontalalignment='right', verticalalignment='bottom', transform=self.axis_BS[f].transAxes) # --- Update plot profile --- self.update_plot_profile() self.fig_BS.canvas.draw_idle() # # --- Plot transect SNR with bathymetry --- # if self.canvas_SNR != None: # # x, y = np.meshgrid( # # stg.time[np.where(np.round(stg.time, 2) == self.spinbox_tmin.value())[0][0]: # # np.where(np.round(stg.time, 2) == self.spinbox_tmax.value())[0][0]], # # stg.r) # # x = np.array([[[]]]) # y = np.array([[[]]]) # # print(f"x : {x.shape}, y : {y.shape}") # # for f, _ in enumerate(stg.freq): # # if x.shape[2] == 0: # x, y = np.meshgrid(stg.time_snr[f, :], stg.r[f, :]) # x = np.array([x]) # y = np.array([y]) # # print(f"x : {x.shape}, y : {y.shape}") # else: # x0, y0 = np.meshgrid(stg.time_snr[f, :], stg.r[f, :]) # x = np.append(x, np.array([x0]), axis=0) # y = np.append(y, np.array([y0]), axis=0) # # print(f"x : {x.shape}, y : {y.shape}") # # self.axis_SNR[f].cla() # # val_min = abs(np.nanmin(stg.SNR_data[f, :, :])) # val_max = abs(np.nanmax(stg.SNR_data[f, :, :])) # if val_min == 0: # val_min = 1e-5 # if val_max < 1000: # levels = np.array([00.1, 1, 2, 10, 100, 1000, 1e6]) # else: # levels = np.array([00.1, 1, 2, 10, 100, val_max]) # bounds = [00.1, 1, 2, 10, 100, 1000, val_max, val_max * 1.2] # norm = BoundaryNorm(boundaries=bounds, ncolors=300) # # # cf = self.axis_SNR[f].contourf(x, -y, # # stg.snr[:, f, # # np.where(np.round(stg.time, # # 2) == self.spinbox_tmin.value())[0][0]: # # np.where(np.round(stg.time, # # 2) == self.spinbox_tmax.value())[0][0]], # # levels, cmap='gist_rainbow', norm=norm) # , shading='gouraud') # # if self.combobox_ABS_system_choice.currentIndex() == 1: # # cf = self.axis_SNR[f].contourf(x[f, :, int(stg.tmin_snr[f]):int(stg.tmax_snr[f])], # -y[f, :, int(stg.tmin_snr[f]):int(stg.tmax_snr[f])], # stg.SNR_data[f, :, int(stg.tmin_snr[f]):int(stg.tmax_snr[f])], # levels, cmap='gist_rainbow', norm=norm) # # elif self.combobox_ABS_system_choice.currentIndex() == 2: # # cf = self.axis_SNR[f].contourf(x[f, :, int(stg.tmin_snr[f]):int(stg.tmax_snr[f])], # -y[f, :, int(stg.tmin_snr[f]):int(stg.tmax_snr[f])], # stg.SNR_data[f, :, int(stg.tmin_snr[f]):int(stg.tmax_snr[ # f])]) # , levels, cmap='gist_rainbow', norm=norm) # # self.axis_SNR[f].text(1, .70, stg.freq_text[f], # fontsize=14, fontweight='bold', fontname="Ubuntu", c="black", alpha=0.5, # horizontalalignment='right', verticalalignment='bottom', # transform=self.axis_SNR[f].transAxes) # # self.axis_SNR[f].plot(stg.t[self.combobox_freq_choice.currentIndex(), :], -stg.r_bottom, # color='black', linewidth=1, linestyle="solid") # # # self.axis_SNR[f].plot( # # stg.time[np.where(np.round(stg.time, 2) == self.spinbox_tmin.value())[0][0]: # # np.where(np.round(stg.time, 2) == self.spinbox_tmax.value())[0][0]], # # - r_bottom[np.where(np.round(stg.time, 2) == self.spinbox_tmin.value())[0][0]: # # np.where(np.round(stg.time, 2) == self.spinbox_tmax.value())[0][0]], # # + np.min(r_bottom[np.where(np.round(noise_data._time, 2) == self.spinbox_tmin.value())[0][0]: # # np.where(np.round(noise_data._time, 2) == self.spinbox_tmax.value())[0][0]]), # # np.max(self._model.r_bottom_cross_section) - self._model.r_bottom_cross_section + np.min(self._model.r_bottom_cross_section), # # color='black', linewidth=1, linestyle="solid") # # self.axis_SNR[f].text(1, .70, stg.freq_text[f], # fontsize=14, fontweight='bold', fontname="Ubuntu", c="black", alpha=0.5, # horizontalalignment='right', verticalalignment='bottom', # transform=self.axis_SNR[f].transAxes) # # self.fig_SNR.canvas.draw_idle() # else: # # acoustic_data = self.load_BS_acoustic_raw_data() # # Selecting the range in which we look for the bottom reflection # rmin = np.int(self.spinbox_depth_min.text()) # 4 # rmax = np.int(self.spinbox_depth_max.text()) # 8 # # # empty result arrays # r_bottom = np.zeros(acoustic_data._nb_profiles) # val_bottom = np.zeros(acoustic_data._nb_profiles) # r_bottom_ind = [] # # ----------- Detecting the bottom ------------- # for d in range(acoustic_data._nb_profiles): # # Index of the range where we look for the peak # ind_min = np.where(acoustic_data._r >= rmin)[0][0] # ind_max = np.where(acoustic_data._r <= rmax)[0][-1] # # Getting the peak # val_bottom[d] = np.nanmax(acoustic_data._BS_raw_data[ind_min:ind_max, # self.combobox_freq_choice.currentIndex() - 1, d]) # # Getting the range cell of the peak # ind_bottom = np.where(acoustic_data._BS_raw_data[ind_min:ind_max, # self.combobox_freq_choice.currentIndex() - 1, d] == val_bottom[d])[0][0] # r_bottom[d] = acoustic_data._r[ind_bottom + ind_min] # r_bottom_ind.append(ind_bottom + ind_min) # # Updating the range where we will look for the peak (in the next cell) # rmin = r_bottom[d] - locale.atof(self.doublespinbox_next_cell.text()) # 0.75 # rmax = r_bottom[d] + locale.atof(self.doublespinbox_next_cell.text()) # 0.75 # # BS_section_bottom = np.zeros((acoustic_data._BS_raw_data.shape[0], acoustic_data._BS_raw_data.shape[2])) # # for i in range(BS_section_bottom.shape[0]): # # print(r_bottom_temp_ind[i]) # # print(i) # BS_section_bottom[r_bottom_ind[i]][i] = 1 # # print(BS_section_bottom[r_bottom_temp_ind[i]][i]) # # # --- Plot transect BS with bathymetry --- # for f in range(acoustic_data._freq.shape[0]): # self.axis_BS[f].cla() # # val_min = np.min(acoustic_data._BS_raw_data[:, f, :]) # val_max = np.max(acoustic_data._BS_raw_data[:, f, :]) # if val_min == 0: # val_min = 1e-5 # # pcm = self.axis_BS[f].pcolormesh( # acoustic_data._time[np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmin.value())[0][0]: # np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmax.value())[0][0]], # -acoustic_data._r, # (acoustic_data._BS_raw_data[:, f, # np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmin.value())[0][0]: # np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmax.value())[0][0]]), # cmap='viridis', norm=LogNorm(vmin=val_min, vmax=val_max)) # , shading='gouraud') # # self.axis_BS[f].plot( # acoustic_data._time[np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmin.value())[0][0]: # np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmax.value())[0][0]], # # np.max(r_bottom[np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmin.value())[0][0]: # # np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmax.value())[0][0]]), # - r_bottom[np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmin.value())[0][0]: # np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmax.value())[0][0]], # # + np.min(r_bottom[np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmin.value())[0][0]: # # np.where(np.round(acoustic_data._time, 2) == self.spinbox_tmax.value())[0][0]]), # # np.max(self._model.r_bottom_cross_section) - self._model.r_bottom_cross_section + np.min(self._model.r_bottom_cross_section), # color='black', linewidth=1, linestyle="solid") # # self.axis_BS[f].text(1, .70, acoustic_data._freq_text[f], # fontsize=14, fontweight='bold', fontname="Ubuntu", c="black", alpha=0.5, # horizontalalignment='right', verticalalignment='bottom', # transform=self.axis_BS[f].transAxes) # # # self.fig_BS.supxlabel('Distance from left bank (m)', fontsize=10) # self.fig_BS.supylabel('Depth (m)', fontsize=10) # # plt.subplots_adjust(bottom=0.125, top=0.98, right=1.03, left=0.08, hspace=0.1) # # self.fig.tight_layout() # cbar = self.fig_BS.colorbar(pcm, ax=self.axis_BS[:], shrink=1, location='right') # cbar.set_label(label='Backscatter acoustic signal (V)', rotation=270, labelpad=10) # self.fig_SNR.canvas.draw_idle() # return r_bottom, val_bottom, r_bottom_ind, BS_section_bottom