101 lines
3.9 KiB
Python
101 lines
3.9 KiB
Python
from Model.AquascatDataLoader import RawAquascatData
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
import matplotlib.pyplot as plt
|
|
from matplotlib.colors import LogNorm
|
|
|
|
# path_BS_raw_data = "/home/bmoudjed/Documents/3 SSC acoustic meas project/Graphical interface project/" \
|
|
# "Data/Acoustic_data/20180107123500.aqa"
|
|
# path_noise_data = "/home/bmoudjed/Documents/3 SSC acoustic meas project/Graphical interface project/" \
|
|
# "Data/AcousticNoise_data/20180107121600.aqa"
|
|
|
|
class AcousticDataLoader():
|
|
|
|
def __init__(self, path_BS_raw_data: str):
|
|
|
|
self.path_BS_raw_data = path_BS_raw_data
|
|
|
|
# --- Load Backscatter acoustic raw data with RawAquascatData class ---
|
|
|
|
self._data_BS = RawAquascatData(self.path_BS_raw_data)
|
|
|
|
self._BS_raw_data = self._data_BS.V
|
|
self._r = self._data_BS.r
|
|
self._freq = self._data_BS.Freq
|
|
self._freq_text = self._data_BS.freqText
|
|
self._time = np.array([t / self._data_BS.PingRate for t in range(self._data_BS.NumProfiles)])
|
|
|
|
self._date = self._data_BS.date.date()
|
|
self._hour = self._data_BS.date.time()
|
|
self._nb_profiles = self._data_BS.NumProfiles
|
|
self._nb_profiles_per_sec = self._data_BS.ProfileRate
|
|
self._nb_cells = self._data_BS.NumCells
|
|
self._cell_size = self._data_BS.cellSize
|
|
self._pulse_length = self._data_BS.TxPulseLength
|
|
self._nb_pings_per_sec = self._data_BS.PingRate
|
|
self._nb_pings_averaged_per_profile = self._data_BS.Average
|
|
self._kt = self._data_BS.Kt
|
|
self._gain_rx = self._data_BS.RxGain
|
|
self._gain_tx = self._data_BS.TxGain
|
|
|
|
# self._snr = np.array([])
|
|
# self._snr_reshape = np.array([])
|
|
# self._time_snr = np.array([])
|
|
|
|
# print(type(self._gain_tx))
|
|
|
|
# print(["BS - " + f for f in self._freq_text])
|
|
# print(self._time.shape[0]*self._r.shape[0]*4)
|
|
|
|
# print(self._time[np.where(np.floor(self._time) == 175)])
|
|
# print(np.where((self._time) == 155)[0][0])
|
|
|
|
# fig, ax = plt.subplots(nrows=1, ncols=1)
|
|
# ax.pcolormesh(self._time, self._r, (self._BS_raw_data[:, 1, :]),
|
|
# cmap='viridis',
|
|
# norm=LogNorm(vmin=1e-5, vmax=np.max(self._BS_raw_data[:, 0, :]))) # , shading='gouraud')
|
|
# # ax.pcolormesh(range(self._BS_raw_data.shape[2]), range(self._BS_raw_data.shape[0]), self._BS_raw_data[:, 1, :], cmap='viridis',
|
|
# # norm=LogNorm(vmin=1e-5, vmax=np.max(self._BS_raw_data[:, 0, :]))) # , shading='gouraud')
|
|
# plt.show()
|
|
|
|
# fig, ax = plt.subplots(nrows=1, ncols=1)
|
|
# ax.plot(self._BS_raw_data[:, 0, 100] , self._r)
|
|
# ax.set_ylim(2, 20)
|
|
# plt.show()
|
|
|
|
# print(self.reshape_BS_raw_cross_section()[0, 0])
|
|
# self.reshape_r()
|
|
# self.reshape_t()
|
|
|
|
def reshape_BS_raw_cross_section(self):
|
|
BS_raw_cross_section = np.reshape(self._BS_raw_data,
|
|
(self._r.shape[0]*len(self._time), self._freq.shape[0]),
|
|
order="F")
|
|
return BS_raw_cross_section
|
|
|
|
def reshape_r(self):
|
|
r = np.reshape(np.repeat(self._r, self._time.shape[0], axis=1),
|
|
self._r.shape[0]*self._time.shape[0],
|
|
order="F")
|
|
return r
|
|
|
|
def reshape_t(self):
|
|
t = np.reshape(np.repeat(self._time, self._r.shape[0]), (self._time.shape[0]*self._r.shape[0], 1))
|
|
return t
|
|
|
|
# def concatenate_data(self):
|
|
# self.reshape_t()
|
|
# self.reshape_BS_raw_cross_section()
|
|
# # print(self.reshape_t().shape)
|
|
# # print(se.lf.reshape_BS_raw_cross_section().shape)
|
|
# df = pd.DataFrame(np.concatenate((self.reshape_t(), self.reshape_BS_raw_cross_section()), axis=1),
|
|
# columns=["time"] + self._freq_text)
|
|
# return df
|
|
|
|
|
|
# if __name__ == "__main__":
|
|
# AcousticDataLoader(path_BS_raw_data)
|
|
|
|
|