acoused/Model/acoustic_data_loader.py

68 lines
2.7 KiB
Python

from Model.AquascatDataLoader import RawAquascatData
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib.colors import LogNorm
class AcousticDataLoader:
def __init__(self, path_BS_raw_data: str):
self.path_BS_raw_data = path_BS_raw_data
# --- Load Backscatter acoustic raw data with RawAquascatData class ---
self._data_BS = RawAquascatData(self.path_BS_raw_data)
self._BS_raw_data = np.swapaxes(self._data_BS.V, 0, 1)
self._freq = self._data_BS.Freq
self._freq_text = self._data_BS.freqText
self._r = np.repeat(np.transpose(self._data_BS.r), self._freq.shape[0], axis=0)
self._time = np.repeat(
np.transpose(np.array([t / self._data_BS.PingRate for t in range(self._data_BS.NumProfiles)])[:, np.newaxis]),
self._freq.shape[0], axis=0)
self._date = self._data_BS.date.date()
self._hour = self._data_BS.date.time()
self._nb_profiles = [self._data_BS.NumProfiles]*self._freq.shape[0]
self._nb_profiles_per_sec = [self._data_BS.ProfileRate]*self._freq.shape[0]
self._nb_cells = [self._data_BS.NumCells]*self._freq.shape[0]
self._cell_size = [self._data_BS.cellSize]*self._freq.shape[0]
self._pulse_length = [self._data_BS.TxPulseLength]*self._freq.shape[0]
self._nb_pings_per_sec = [self._data_BS.PingRate]*self._freq.shape[0]
self._nb_pings_averaged_per_profile = [self._data_BS.Average]*self._freq.shape[0]
self._kt = self._data_BS.Kt.tolist()
self._gain_rx = self._data_BS.RxGain.tolist()
self._gain_tx = self._data_BS.TxGain.tolist()
def reshape_BS_raw_data(self):
BS_raw_cross_section = np.reshape(self._BS_raw_data,
(self._r.shape[1] * self._time.shape[1], self._freq.shape[0]),
order="F")
return BS_raw_cross_section
def reshape_r(self):
r = np.zeros((self._r.shape[1] * self._time.shape[1], self._freq.shape[0]))
for i, _ in enumerate(self._freq):
for j in range(self._time.shape[1]):
r[j*self._r.shape[1]:(j+1)*self._r.shape[1], i] = self._r[i, :]
return r
def compute_r_2D(self):
r2D = np.zeros((self._freq.shape[0], self._r.shape[1], self._time.shape[1]))
for f, _ in enumerate(self._freq):
r2D[f, :, :] = np.repeat(np.transpose(self._r[f, :])[:, np.newaxis], self._time.shape[1], axis=1)
return r2D
def reshape_t(self):
t = np.zeros((self._r.shape[1] * self._time.shape[1], self._freq.shape[0]))
for i, _ in enumerate(self._freq):
t[:, i] = np.repeat(self._time[i, :], self._r.shape[1])
return t