acoused/settings.py

132 lines
3.8 KiB
Python

""" this file includs global variables shared between tab """
import numpy as np
import pandas as pd
import datetime
# --- load raw data ---
path_BS_raw_data = ""
filename_BS_raw_data = ""
BS_raw_data = np.array([]) # BS raw data : all measurement (go and back)
r = np.array([])
r_2D = np.array([])
freq = np.array([])
freq_text = list()
time = np.array([])
path_BS_noise_data = ""
filename_BS_noise_data = ""
BS_noise_data = np.array([]) # BS noise data averaged (array has the same shape than BS_raw_data shape)
date = []
date_noise = []
hour = []
hour_noise = []
nb_profiles = 0
nb_profiles_per_sec = 0.0
nb_cells = 0
cell_size = 0.0
pulse_length = 0.0
nb_pings_per_sec = 0
nb_pings_averaged_per_profile = 0.0
kt = np.array([])
gain_rx = np.array([])
gain_tx = np.array([])
snr = np.array([]) # snr is computed with BS_noise_data
time_snr = np.array([])
# --- reshape raw data for table of values in Acoustic Data tab ---
time_reshape = np.array([])
r_reshape = np.array([])
BS_raw_data_reshape = np.array([])
snr_reshape = np.array([]) # snr is reshape to be included in table of values in acoustic data tab
DataFrame_acoustic = pd.DataFrame()
# --- Processed data in Acoustic Data Tab and used in Acoustic processing tab ---
tmin = np.array([]) # minimum boundary of time (spin box tmin)
tmax = np.array([]) # maximum boundary of time (spin box tmin)
BS_data = np.array([]) # BS data limited with tmin and tmax values of spin box
BS_data_section = np.array([]) # BS data in the section. Values NaN outside the bottom of the section are deleted
Noise_data = np.array([]) # Noise_data = BS_noise_data[:, :, tmin:tmax]
SNR_data = np.array([]) # SNR_data = snr[:, :, tmin:tmax]
t = np.array([])
r_bottom = np.array([])
val_bottom = np.array([])
ind_bottom = np.array([])
freq_bottom_detection = 0
# --- Processed data in Signal Processing Tab ---
BS_data_section_SNR_filter = np.array([]) # BS data filtered with SNR values (remove point if SNR < value)
BS_data_section_averaged = np.array([]) # BS data averaged
time_average = np.array([])
SNR_data_average = np.array([]) # SNR data computed with BS signal averaged (not with BS raw signal)
water_attenuation = 0
sediment_attenuation = 0
FCB = np.array([])
lin_reg = tuple()
# --- Sample Data ---
samples = []
fine_sediment_path = ""
fine_sediment_filename = ""
fine_sediment_columns = []
sample_distance_from_bank = np.array([]) # distance from left bank (m)
sample_depth = np.array([]) # depth (m)
sample_time = np.array([])
radius_grain = np.array([]) # grain radius (um)
Ctot_fine = np.array([]) # Total concentration (g/L)
D50_fine = np.array([]) # median diameter (um)
frac_vol_fine = np.array([]) # Volume fraction (%)
frac_vol_fine_cumul = np.array([]) # Cumulated volume fraction (%)
sand_sediment_path = ""
sand_sediment_filename = ""
sand_sediment_columns = []
Ctot_sand = np.array([]) # Total concentration (g/L)
D50_sand = np.array([]) # median diameter (um)
frac_vol_sand = np.array([]) # Volume fraction (%)
frac_vol_sand_cumul = np.array([]) # Cumulated volume fraction (%)
Ctot_fine_per_cent = np.array([])
Ctot_sand_per_cent = np.array([])
# --- Acoustic inversion method ---
temperature = 0
water_attenuation = np.array([])
water_velocity = 0
X_exponent = np.array([])
zeta = np.array([])
kt_corrected = np.array([])
kt_corrected_2D = np.array([])
kt_corrected_3D = np.array([])
J_cross_section = np.array([])
frequencies_to_compute_VBI = np.array([])
VBI_cross_section = np.array([])
frequency_to_compute_SSC = 0
ks = 0
SSC_fine = np.array(())
SSC_sand = np.array([])