Plot of SNR field is corrected when the user set a profile tail level #4
parent
190c0f0b80
commit
320971160d
|
|
@ -1084,23 +1084,20 @@ class SignalProcessingTab(QWidget):
|
|||
val_max = np.nanmax(stg.SNR_stream_bed[self.combobox_acoustic_data_choice.currentIndex()][f, :, :])
|
||||
if val_min == val_max:
|
||||
levels = np.array([00.1, 1, 2, 10, 100, 1000, 1e6])
|
||||
bounds = [00.1, 1, 2, 10, 100, 1000, val_max, val_max * 1.2]
|
||||
bounds = [00.1, 1, 2, 10, 100, 1000, val_max * 1.2]
|
||||
norm = BoundaryNorm(boundaries=bounds, ncolors=300)
|
||||
else:
|
||||
if val_min == 0:
|
||||
val_min = 1e-5
|
||||
if val_max > 1000:
|
||||
levels = np.array([00.1, 1, 2, 10, 100, 1000, 1e6])
|
||||
bounds = [00.1, 1, 2, 10, 100, 1000, val_max, val_max * 1.2]
|
||||
bounds = [00.1, 1, 2, 10, 100, 1000, val_max * 1.2]
|
||||
norm = BoundaryNorm(boundaries=bounds, ncolors=300)
|
||||
else:
|
||||
levels = np.array([00.1, 1, 2, 10, 100, val_max])
|
||||
bounds = [00.1, 1, 2, 10, 100, 1000, val_max * 1000]
|
||||
levels = np.array([00.1, 1, 2, 10, 100, 1000, val_max * 1000 + 1])
|
||||
bounds = [00.1, 1, 2, 10, 100, 1000, val_max * 1000 + 1]
|
||||
norm = BoundaryNorm(boundaries=bounds, ncolors=300)
|
||||
|
||||
bounds = [00.1, 1, 2, 10, 100, 1000, val_max, val_max * 1.2]
|
||||
norm = BoundaryNorm(boundaries=bounds, ncolors=300)
|
||||
|
||||
cf = (self.axis_SNR[f].contourf(x, -y,
|
||||
stg.SNR_stream_bed[self.combobox_acoustic_data_choice.currentIndex()][f, :, :],
|
||||
levels, cmap='gist_rainbow',
|
||||
|
|
@ -1140,24 +1137,21 @@ class SignalProcessingTab(QWidget):
|
|||
val_max = np.nanmax(stg.SNR_cross_section[self.combobox_acoustic_data_choice.currentIndex()][f, :, :])
|
||||
if val_min == val_max:
|
||||
levels = np.array([00.1, 1, 2, 10, 100, 1000, 1e6])
|
||||
bounds = [00.1, 1, 2, 10, 100, 1000, val_max, val_max * 1.2]
|
||||
bounds = [00.1, 1, 2, 10, 100, 1000, val_max * 1.2]
|
||||
norm = BoundaryNorm(boundaries=bounds, ncolors=300)
|
||||
else:
|
||||
if val_min == 0:
|
||||
val_min = 1e-5
|
||||
if val_max > 1000:
|
||||
levels = np.array([00.1, 1, 2, 10, 100, 1000, 1e6])
|
||||
bounds = [00.1, 1, 2, 10, 100, 1000, val_max, val_max * 1.2]
|
||||
bounds = [00.1, 1, 2, 10, 100, 1000, val_max * 1.2]
|
||||
norm = BoundaryNorm(boundaries=bounds, ncolors=300)
|
||||
|
||||
else:
|
||||
levels = np.array([00.1, 1, 2, 10, 100, val_max])
|
||||
bounds = [00.1, 1, 2, 10, 100, 1000, val_max * 1000]
|
||||
levels = np.array([00.1, 1, 2, 10, 100, 1000, val_max * 1000 + 1])
|
||||
bounds = [00.1, 1, 2, 10, 100, 1000, val_max * 1000 + 1]
|
||||
norm = BoundaryNorm(boundaries=bounds, ncolors=300)
|
||||
|
||||
bounds = [00.1, 1, 2, 10, 100, 1000, val_max, val_max * 1.2]
|
||||
norm = BoundaryNorm(boundaries=bounds, ncolors=300)
|
||||
|
||||
cf = (self.axis_SNR[f].contourf(x, -y,
|
||||
stg.SNR_cross_section[
|
||||
self.combobox_acoustic_data_choice.currentIndex()][f, :, :],
|
||||
|
|
@ -1172,18 +1166,18 @@ class SignalProcessingTab(QWidget):
|
|||
val_max = np.nanmax(stg.SNR_raw_data[self.combobox_acoustic_data_choice.currentIndex()][f, :, :])
|
||||
if val_min == val_max:
|
||||
levels = np.array([00.1, 1, 2, 10, 100, 1000, 1e6])
|
||||
bounds = [00.1, 1, 2, 10, 100, 1000, val_max, val_max * 1.2]
|
||||
bounds = [00.1, 1, 2, 10, 100, 1000, val_max * 1.2]
|
||||
norm = BoundaryNorm(boundaries=bounds, ncolors=300)
|
||||
else:
|
||||
if val_min == 0:
|
||||
val_min = 1e-5
|
||||
if val_max > 1000:
|
||||
levels = np.array([00.1, 1, 2, 10, 100, 1000, 1e6])
|
||||
bounds = [00.1, 1, 2, 10, 100, 1000, val_max, val_max * 1.2]
|
||||
bounds = [00.1, 1, 2, 10, 100, 1000, val_max * 1.2]
|
||||
norm = BoundaryNorm(boundaries=bounds, ncolors=300)
|
||||
else:
|
||||
levels = np.array([00.1, 1, 2, 10, 100, val_max])
|
||||
bounds = [00.1, 1, 2, 10, 100, 1000, val_max * 1000]
|
||||
levels = np.array([00.1, 1, 2, 10, 100, 1000, val_max*1000 + 1])
|
||||
bounds = [00.1, 1, 2, 10, 100, 1000, val_max * 1000 + 1]
|
||||
norm = BoundaryNorm(boundaries=bounds, ncolors=300)
|
||||
|
||||
cf = (self.axis_SNR[f].contourf(x, -y,
|
||||
|
|
|
|||
Loading…
Reference in New Issue